After a thorough analysis of existing Internet of Things (IoT) related ontologies, in this paper we propose a solution that aims to achieve semantic interoperability among heterogeneous testbeds. Our model is framed within the EU H2020's FIESTA-IoT project, that aims to seamlessly support the federation of testbeds through the usage of semantic-based technologies. Our proposed model (ontology) takes inspiration from the well-known Noy et al. methodology for reusing and interconnecting existing ontologies. To build the ontology, we leverage a number of core concepts from various mainstream ontologies and taxonomies, such as Semantic Sensor Network (SSN), M3-lite (a lite version of M3 and also an outcome of this study), WGS84, IoT-lite, Time, and DUL. In addition, we also introduce a set of tools that aims to help external testbeds adapt their respective datasets to the developed ontology
Abstract-A honeypot is a type of security facility deliberately created to be probed, attacked, and compromised. It is often used for protecting production systems by detecting and deflecting unauthorized accesses. It is also useful for investigating the behavior of attackers, and in particular, unknown attacks. For the past 17 years plenty of effort has been invested in the research and development of honeypot techniques, and they have evolved to be an increasingly powerful means of defending against the creations of the blackhat community. In this paper, by studying a wide set of honeypots, the two essential elements of honeypots-the decoy and the captorare captured and presented, together with two abstract organizational forms-independent and cooperative-where these two elements can be integrated. A novel decoy and captor (D-C) based taxonomy is proposed for the purpose of studying and classifying the various honeypot techniques. An extensive set of independent and cooperative honeypot projects and research that cover these techniques is surveyed under the taxonomy framework. Furthermore, two subsets of features from the taxonomy are identified, which can greatly influence the honeypot performances. These two subsets of features are applied to a number of typical independent and cooperative honeypots separately in order to validate the taxonomy and predict the honeypot development trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.