Geomorphic strain markers accumulating the effects of many earthquake cycles help to constrain the mechanical behaviour of continental rift systems as well as the related seismic hazards. In the Corinth Rift (Greece), the unique record of onshore and offshore markers of Pleistocene ~100-ka climate cycles provides an outstanding possibility to constrain rift mechanics over a range of timescales. Here we use high-resolution topography to analyse the 3D geometry of a sequence of Pleistocene emerged marine terraces associated with flexural rift-flank uplift. We integrate this onshore dataset with offshore seismic data to provide a synoptic view of the flexural deformation across the rift. This allows us to derive an average slip rate of 4.5-9.0 mm·yr-1 on the master fault over the past ~610 ka and an uplift/subsidence ratio of 1:1.1-2.4. We reproduce the observed flexure patterns, using 3 and 5-layered lithospheric scale finite element models. Modelling results imply that the observed elastic flexure is produced by coseismic slip along 40-60° planar normal faults in the elastic upper crust, followed by postseismic viscous relaxation occurring within the basal lower crust or upper mantle. We suggest that such a mechanism may typify rapid localised extension of continental lithosphere.
Geomorphic strain markers accumulating the effects of many earthquake cycles help to constrain the mechanical behaviour of continental rift systems as well as the related seismic hazards. In the Corinth Rift (Greece), the unique record of onshore and offshore markers of Pleistocene ~100-ka climate cycles provides an outstanding possibility to constrain rift mechanics over a range of timescales. Here we use high-resolution topography to analyse the 3D geometry of a sequence of Pleistocene emerged marine terraces associated with flexural rift-flank uplift. We integrate this onshore dataset with offshore seismic data to provide a synoptic view of the flexural deformation across the rift. This allows us to derive an average slip rate of 4.5–9.0 mm·yr −1 on the master fault over the past ~610 ka and an uplift/subsidence ratio of 1:1.1–2.4. We reproduce the observed flexure patterns, using 3 and 5-layered lithospheric scale finite element models. Modelling results imply that the observed elastic flexure is produced by coseismic slip along 40–60° planar normal faults in the elastic upper crust, followed by postseismic viscous relaxation occurring within the basal lower crust or upper mantle. We suggest that such a mechanism may typify rapid localised extension of continental lithosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.