Paramagnetic (open-shell) systems, including transition metal ions, radical intermediates and defect centres, are often involved in catalytic transformations. Despite the prevalence of such species in catalysis, there are relatively few studies devoted to their characterisation, compared to their diamagnetic counterparts. Electron Paramagnetic Resonance (EPR) is an ideal technique perfectly suited to characterise such reaction centres, providing valuable insights into the molecular and supramolecular structure, the electronic structure, the dynamics and even the concentration of the paramagnetic systems under investigation. Furthermore, as EPR is such a versatile technique, samples can be measured as liquids, solids (frozen solutions and powders) and single crystals, making it ideal for studies in heterogeneous, homogeneous and enzyme catalysis. Coupled with the higher resolving power of the pulsed, higher frequency and hyperfine techniques, unsurpassed detail on the structure of these catalytic centres can be obtained. In this Chapter, we provide an overview to demonstrate how advanced EPR methods can be successfully exploited in the study of open-shell paramagnetic reaction centres in heterogeneous, homogeneous and enzymatic catalysts, including heme-based enzymes for use in biocatalysts, polymerisation based catalysts, supported microporous heterogeneous catalytic centres to homogeneous metal complexes for small molecule actions.
A sound synthetic procedure for the preparation of trans‐[PtBr(µ‐Br)(PPh3)]2 is described. The species was fully characterized and used to obtain [PtBr2(PPh3)(L)] complexes (L = DMSO, p‐toluidine, pyridine) by a bridge‐splitting reaction. All products were fully characterized by NMR spectroscopy, together with cis‐[PtBr2(PPh3)(NCCH3)], obtained as an intermediate in the synthesis of the dinuclear precursor. Cis‐[PtBr2(PPh3)(NCCH3)] was also studied by X‐ray diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.