In Escherichia coli, acetylation of proteins at lysines depends largely on a non-enzymatic acetyl-phosphate-dependent mechanism. To assess the functional significance of this post-translational modification, we first grew wild-type cells in buffered tryptone broth with glucose, and monitored acetylation over time by immunochemistry. Most acetylation occurred in stationary phase and paralleled glucose consumption and acetate excretion, which began upon entry into stationary phase. Transcription of rprA, a stationary phase regulator, exhibited similar behavior. To identify sites and substrates with significant acetylation changes, we used label-free, quantitative proteomics to monitor changes in protein acetylation. During growth, both the number of identified sites and the extent of acetylation increased with considerable variation among lysines from the same protein. Since glucose-regulated lysine acetylation was predominant in central metabolic pathways and overlapped with acetyl-phosphate-regulated acetylation sites, we deleted the major carbon regulator CRP and observed a dramatic loss of acetylation that could be restored by deleting the enzyme that degrades acetyl phosphate. We propose that acetyl-phosphate-dependent acetylation is a response to carbon flux that could regulate central metabolism.
Nε-Lysine acetylation is one of the most abundant and important posttranslational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed an E. coli strain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate nonenzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellum-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial posttranslational modification.
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N -𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth.IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be avoided. They also demonstrate how to increase bacterial growth in complex media.KEYWORDS acetylation, complex media, improved cell growth, magnesium, tryptone B acteria are routinely grown in complex media containing a rich assortment of nutrients. For example, lysogeny broth (LB) contains tryptone and yeast exact. Together, these components provide a rich mixture of nutrients that supports growth of numerous bacteria. However, the complexity of such media obscures factors governing cell behavior, especially those that limit cell growth.We routinely grow Escherichia coli aerobically in buffered tryptone broth (TB7) supplemented with 4 g/liter glucose (TB7-glucose) when studying protein acetylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.