Natural products continue to provide a diverse and unique source of bioactive lead compounds for drug discovery, but maintaining their continued eminence as source compounds is challenging in the face of the changing face of the pharmaceutical industry and the changing nature of biodiversity prospecting brought about by the Convention of Biodiversity. This review provides an overview of some of these challenges, and suggests ways in which they can be addressed so that natural products research can remain a viable and productive route to drug discovery. Results from International Cooperative Biodiversity Groups (ICBGs) working in Madagascar, Panama, and Suriname are used as examples of what can be achieved when biodiversity conservation is linked to drug discovery.
The important anticancer drug Taxol (paclitaxel) binds to tubulin in a stoichiometric ratio and promotes its assembly into microtubules. The conformation of microtubule-bound drug has been the subject of intense study, and various suggestions have been made. In this work we present experimental and theoretical evidence that Taxol adopts a T-shaped conformation when it is bound to tubulin.
The conformation of microtubule-bound paclitaxel has been examined by fluorescence and solid-state NMR spectroscopy. A fluorescent derivative of paclitaxel, 3'-N-debenzoyl-3'-N-(m-aminobenzoyl)paclitaxel (N-AB-PT), was prepared by semisynthesis. No differences in the microtubule-promoting activity between N-AB-PT and paclitaxel were observed, demonstrating that addition of the amino group did not adversely affect the ligand-receptor association. The distance between the fluorophore N-AB-PT and the colchicine binding site on tubulin polymers was determined through time-resolved measurements of fluorescence resonance energy transfer to be 29 +/- 2 A. The absorption and emission spectra of N-AB-PT bound to microtubules and in various solvents were measured. A plot of the Stokes shift as a function of solvent polarity was highly unusual. The Stokes shift increased linearly with solvent polarity in protic solvents, which is expected due to the nature of the fluorophore. In aprotic solvents, however, the Stokes shift was invariant with solvent polarity, indicating that the fluorophore was somehow shielded from the effects of the solvent. These data are best explained by considering the solution-state conformational properties of paclitaxel. It is known that paclitaxel adopts different conformations depending on the nature of the solvent, and these fluorescence data are consistent with the molecule adopting a "hydrophobic collapsed" conformation in protic solvents and an "extended" conformation in aprotic solvents. The Stokes shift of microtubule-bound N-AB-PT was within the protic solvent region, demonstrating that microtubule-bound paclitaxel is in a hydrophobic collapsed conformation. Microtubule-bound paclitaxel was also investigated by solid-state NMR. Paclitaxel was labeled with (19)F at the para position of the C-2 benzoyl substituent and with (13)C and (15)N in the side chain. Distances between the fluorine and carbon nuclei were determined by REDOR. The distance between the fluorine and the 3'-amide carbonyl carbon was 9.8 +/- 0.5 A, and the distance between the fluorine atom and the 3'-methine carbon was 10. 3 +/- 0.5 A. These spectroscopic data were used in conjunction with molecular modeling to refine the microtubule-bound conformation of paclitaxel and to suggest an alternative orientation of the ligand within the paclitaxel binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.