We sought to evaluate the potential of C17.2 neural progenitor cells (NPCs) engineered to secrete glial cell line-derived neurotrophic factor (GDNF) to survive, differentiate and promote functional recovery following engraftment into the brains of adult male Sprague-Dawley rats subjected to lateral fluid percussion brain injury. First, we demonstrated continued cortical expression of GDNF receptor components (GFRalpha-1, c-Ret), suggesting that GDNF could have a physiological effect in the immediate post-traumatic period. Second, we demonstrated that GDNF over-expression reduced apoptotic NPC death in vitro. Finally, we demonstrated that GDNF over-expression improved survival, promoted neuronal differentiation of GDNF-NPCs at 6 weeks, as compared with untransduced (MT) C17.2 cells, following transplantation into the perilesional cortex of rats at 24 h post-injury, and that brain-injured animals receiving GDNF-C17.2 transplants showed improved learning compared with those receiving vehicle or MT-C17.2 cells. Our results suggest that transplantation of GDNF-expressing NPCs in the acute post-traumatic period promotes graft survival, migration, neuronal differentiation and improves cognitive outcome following traumatic brain injury.
Axonal injury is a hallmark of traumatic brain injury (TBI) and is associated with a poor clinical outcome. Following central nervous system injury, axons regenerate poorly, in part due to the presence of molecules associated with myelin that inhibit axonal outgrowth, including myelinassociated glycoprotein (MAG). The involvement of MAG in neurobehavioral deficits and tissue loss following experimental TBI remains unexplored and was evaluated in the current study using an MAG-specific monoclonal antibody (mAb). Anesthetized rats (n = 102) were subjected to either lateral fluid percussion brain injury (n = 59) or sham injury (n = 43). In surviving animals, beginning at 1 h post-injury, 8.64 μg anti-MAG mAb (n = 33 injured, n = 21 sham) or control IgG (n = 26 injured, n = 22 sham) was infused intracerebroventricularly for 72 h. One group of these rats (n = 14 sham, n = 11 injured) was killed at 72 h post-injury for verification of drug diffusion and MAG immunohistochemistry. All other animals were evaluated up to 8 weeks post-injury using tests for neurologic motor, sensory and cognitive function. Hemispheric tissue loss was also evaluated at 8 weeks post-injury. At 72 h post-injury, increased immunoreactivity for MAG was seen in the ipsilateral cortex, thalamus and hippocampus of brain-injured animals, and anti-MAG mAb was detectable in the hippocampus, fimbria and ventricles. Brain-injured animals receiving anti-MAG mAb showed significantly improved recovery of sensorimotor function at 6 and 8 weeks (P < 0.01) post-injury when compared with brain-injured IgG-treated animals. Additionally, at 8 weeks postinjury, the anti-MAG mAb-treated brain-injured animals demonstrated significantly improved cognitive function and reduced hemispheric tissue loss (P < 0.05) when compared with their braininjured controls. These results indicate that MAG may contribute to the pathophysiology of experimental TBI and treatment strategies that target MAG may be suitable for further evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.