That NK cell receptors engage fast-evolving MHC class I ligands suggests that they, too, evolve rapidly. To test this hypothesis, the structure and class I specificity of chimpanzee KIR and CD94:NKG2 receptors were determined and compared to their human counterparts. The KIR families are divergent, with only three KIR conserved between chimpanzees and humans. By contrast, CD94:NKG2 receptors are conserved. Whereas receptors for polymorphic class I are divergent, those for nonpolymorphic class I are conserved. Although chimpanzee and human NK cells exhibit identical receptor specificities for MHC-C, they are mediated by nonorthologous KIR. These results demonstrate the rapid evolution of NK cell receptor systems and imply that "catching up" with class I is not the only force driving this evolution.
To assess polymorphism and variation in human and chimpanzee NK complex genes, we determined the coding-region sequences for CD94 and NKG2A, C, D, E, and F from several human (Homo sapiens) donors and common chimpanzees (Pan troglodytes). CD94 is highly conserved, while the NKG2 genes exhibit some polymorphism. For all the genes, alternative mRNA splicing variants were frequent among the clones obtained by RT-PCR. Alternative splicing acts similarly in human and chimpanzee to produce the CD94B variant from the CD94 gene and the NKG2B variant from the NKG2A gene. Whereas single chimpanzee orthologs for CD94, NKG2A, NKG2E, and NKG2F were identified, two chimpanzee paralogs of the human NKG2C gene were defined. The chimpanzee Pt-NKG2CI gene encodes a protein similar to human NKG2C, whereas in the chimpanzee Pt-NKG2CII gene the translation frame changes near the beginning of the carbohydrate recognition domain, causing premature termination. Analysis of a panel of chimpanzee NK cell clones showed that Pt-NKG2CI and Pt-NKG2CII are independently and clonally expressed. Pt-NKG2CI and Pt-NKG2CII are equally diverged from human NKG2C, indicating that they arose by gene duplication subsequent to the divergence of chimpanzee and human ancestors. Genomic DNA from 80 individuals representing six primate species were typed for the presence of CD94 and NKG2. Each species gave distinctive typing patterns, with NKG2A and CD94 being most conserved. Seven different NK complex genotypes within the panel of 48 common chimpanzees were due to differences in Pt-NKG2C and Pt-NKG2D genes.
Chemokines are small inducible proteins that direct the migration of leukocytes. While chemokines are well characterised in mammals, they have yet to be identified in fish. We have isolated a cDNA clone from rainbow trout (Oncorhynchus mykiss) which encodes a protein (CK-1) having structural features typical of chemokines. Amino-acid residues that define the beta-chemokines of mammals are conserved in CK-1, including the paired cysteine motif, CC. Further similarities are shared with the C6 subfamily of beta-chemokines. In contrast, the organisation of the CK-1 gene is closer to that of mammalian alpha-chemokine genes than beta-chemokine genes. The CK-1 gene is present in all four salmonid species examined and the nucleotide sequences of the exons are highly conserved. CK-1 has characteristics in common with mammalian alpha and beta-chemokine genes, suggesting that this salmonid chemokine gene preserves traits once present in the ancestral chemokine gene from which modern mammalian chemokine genes evolved.
, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.