Suspended sediment causes a range of environmental damage, including benthic smothering, irritation of fish gills, and transport of sorbed contaminants. Much of the impact, while sediment remains suspended, is related to its light attenuation, which reduces visual range in water and light availability for photosynthesis. Thus measurement of the optical attributes of suspended matter in many instances is more relevant than measurement of its mass concentration. Nephelometric turbidity, an index of light scattering by suspended particles, has been widely used as a simple, cheap, instrumental surrogate for suspended sediment, that also relates more directly than mass concentration to optical effects of suspended matter. However, turbidity is only a relative measure of scattering (versus arbitrary standards) that has no intrinsic environmental relevance until calibrated to a ‘proper’ scientific quantity. Visual clarity (measured as Secchi or black disc visibility) is a preferred optical quantity with immediate environmental relevance to aesthetics, contact recreation, and fish habitat. Contrary to common perception, visual clarity measurement is not particularly subjective and is more precise than turbidity measurement. Black disc visibility is inter‐convertible with beam attenuation, a fundamental optical quantity that can be monitored continuously by beam transmissometry. Visual clarity or beam attenuation should supplant nephelometric turbidity in many water quality applications, including environmental standards.
The study of extracellular vesicles (EVs) is a rapidly growing field due to their great potential in many areas of clinical medicine including diagnostics, prognostics, theranostics, and therapeutics. Flow cytometry is currently one of the most popular methods of analyzing EVs due to it being a high‐throughput, multiparametric technique, that is readily available in the majority of research labs. Despite its wide use, few commercial flow cytometers are designed specifically for the detection of EVs. Many flow cytometers used for EV analysis are working at their detection limits and are unable to detect the majority of EVs. Currently, very little standardization exists for EV flow cytometry, which is an issue because flow cytometers vary considerably in the way they collect scattered or fluorescent light from particles being interrogated. This makes published research hard to interpret, compare, and in some cases, impossible to reproduce. Here we demonstrate a method of flow cytometer light scatter standardization, utilizing flow cytometer postacquisition analysis software (FCMPASS). FCMPASS is built upon Mie theory and enables the approximation of flow cytometer geometric parameters either by analyzing beads of known diameter and refractive index or by inputting the collection angle if known. The software is then able to create a scatter‐diameter curve and scatter‐refractive index curve that enables researchers to convert scattering data and instrument sensitivity into standardized units. Furthermore, with the correct controls, light scatter data can be converted to diameter distributions or refractive index distributions. FCMPASS therefore offers a freely available and ergonomic method of standardizing and further extending EV characterization using flow cytometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.