SummaryMany broadly neutralizing antibodies (bnAbs) against HIV-1 recognize and/or penetrate the glycan shield on native, virion-associated envelope glycoprotein (Env) spikes. The same bnAbs also bind to recombinant, soluble trimeric immunogens based on the SOSIP design. While SOSIP trimers are close structural and antigenic mimics of virion Env, the extent to which their glycan structures resemble ones on infectious viruses is undefined. Here, we compare the overall glycosylation of gp120 and gp41 subunits from BG505 (clade A) virions produced in a lymphoid cell line with those from recombinant BG505 SOSIP trimers, including CHO-derived clinical grade material. We also performed detailed site-specific analyses of gp120. Glycans relevant to key bnAb epitopes are generally similar on the recombinant SOSIP and virion-derived Env proteins, although the latter do contain hotspots of elevated glycan processing. Knowledge of native versus recombinant Env glycosylation will guide vaccine design and manufacturing programs.
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by a positive RNA strand arterivirus. PRRS virus (PRRSV) interacts primarily with lung macrophages. Identifying the genetic components involved in host resistance/susceptibility would represent an important step forward in the design of disease control programs. In this study, alveolar macrophages derived from five commercial pig lines were used to study the innate immune response to PRRSV infection in vitro. Analysis by flow cytometry has demonstrated that bronchial alveolar lavage fluid (BALF) preparations were almost exclusively composed of alveolar macrophages and that the pigs tested were free from infection. Macrophages from the Landrace line showed significantly reduced virus replication and poor growth of PRRSV during 30 h of infection. By 72 h, PRRSV viral load was down to 2.5 log(10) TCID(50) compared with an average of 5 log(10) TCID(50) for the other breeds tested. These observations suggest that factors intrinsic to the Landrace breed may be responsible for this reduced or delayed response to PRRSV. Preliminary investigation suggests that the PRRSV coreceptor, sialoadhesin, may not be responsible for the Landrace macrophage phenotype as its abundance and localisation were comparable in all the breeds. Strikingly, we found that the reduced or delayed growth of PRRSV was temporally associated with high levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-8 mRNA accumulation and substantial reduction of secretion of IL-8, suggesting a key contributory role for cytokine synthesis and secretion during the innate immune response to PRRSV infection.
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by a positive RNA strand arterivirus. PRRS virus (PRRSV) interacts primarily with lung macrophages. Little is known how the virus subverts the innate immune response to initiate its replication in alveolar macrophages. Large-scale transcriptional responses of macrophages with different levels of susceptibility to PRRSV infection were compared over 30 h of infection. This study demonstrates a rapid and intense host transcriptional remodelling during the early phase of the replication of the virus which correlates with transient repression of type-I interferon transcript as early as 8 h post-infection. These results support the suggestion from previous studies that host innate immune response inhibits replication of European porcine reproductive and respiratory syndrome virus in macrophages by altering differential regulation of type-I interferon transcriptional response.
The virus recovered from cases of European brown hare syndrome in the U.K. contains one major capsid protein of approximately 60 k molecular weight and morphologically resembles known caliciviruses. It has been compared with a European isolate of rabbit haemorrhagic disease calicivirus and, although it shows some antigenic similarity, it is not identical. In transmission and protection studies the virus from U.K. hares failed to produce disease in rabbits and did not effectively protect against subsequent challenge with the rabbit calicivirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.