A number of differences have emerged between modern and classic approaches to constituency parsing in recent years, with structural components like grammars and featurerich lexicons becoming less central while recurrent neural network representations rise in popularity. The goal of this work is to analyze the extent to which information provided directly by the model structure in classical systems is still being captured by neural methods. To this end, we propose a high-performance neural model (92.08 F1 on PTB) that is representative of recent work and perform a series of investigative experiments. We find that our model implicitly learns to encode much of the same information that was explicitly provided by grammars and lexicons in the past, indicating that this scaffolding can largely be subsumed by powerful general-purpose neural machinery.
In the absence of annotations in the target language, multilingual models typically draw on extensive parallel resources. In this paper, we demonstrate that accurate multilingual partof-speech (POS) tagging can be done with just a few (e.g., ten) word translation pairs. We use the translation pairs to establish a coarse linear isometric (orthonormal) mapping between monolingual embeddings. This enables the supervised source model expressed in terms of embeddings to be used directly on the target language. We further refine the model in an unsupervised manner by initializing and regularizing it to be close to the direct transfer model. Averaged across six languages, our model yields a 37.5% absolute improvement over the monolingual prototypedriven method (Haghighi and Klein, 2006) when using a comparable amount of supervision. Moreover, to highlight key linguistic characteristics of the generated tags, we use them to predict typological properties of languages, obtaining a 50% error reduction relative to the prototype model.
In this paper, we consider the task of digitally voicing silent speech, where silently mouthed words are converted to audible speech based on electromyography (EMG) sensor measurements that capture muscle impulses. While prior work has focused on training speech synthesis models from EMG collected during vocalized speech, we are the first to train from EMG collected during silently articulated speech. We introduce a method of training on silent EMG by transferring audio targets from vocalized to silent signals. Our method greatly improves intelligibility of audio generated from silent EMG compared to a baseline that only trains with vocalized data, decreasing transcription word error rate from 64% to 4% in one data condition and 88% to 68% in another. To spur further development on this task, we share our new dataset of silent and vocalized facial EMG measurements.
We consider the problem of learning to map from natural language instructions to state transitions (actions) in a data-efficient manner. Our method takes inspiration from the idea that it should be easier to ground language to concepts that have already been formed through pre-linguistic observation. We augment a baseline instruction-following learner with an initial environment-learning phase that uses observations of language-free state transitions to induce a suitable latent representation of actions before processing the instruction-following training data. We show that mapping to pre-learned representations substantially improves performance over systems whose representations are learned from limited instructional data alone.
In this paper, we present an improved model for voicing silent speech, where audio is synthesized from facial electromyography (EMG) signals. To give our model greater flexibility to learn its own input features, we directly use EMG signals as input in the place of handdesigned features used by prior work. Our model uses convolutional layers to extract features from the signals and Transformer layers to propagate information across longer distances. To provide better signal for learning, we also introduce an auxiliary task of predicting phoneme labels in addition to predicting speech audio features. On an open vocabulary intelligibility evaluation, our model improves the state of the art for this task by an absolute 25.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.