Major histocompatibility complex class I proteins (MHC-I) load short peptides derived from proteolytic cleavage of endogenous proteins in any cell of the body, in a process termed antigen processing and presentation. When the source proteins are altered self or encoded by a pathogen, recognition of peptide/MHC-I complexes at the plasma membrane leads to CD8(+) T-lymphocyte responses that clear infections and probably underlie tumor immune surveillance. On the other hand, presentation of self peptides may cause some types of autoimmunity. The peptides that are presented determine the specificity and efficiency of pathogen clearance or, conversely, of immunopathology. In this review we highlight the growing number of peptidases which, as a by-product of their regular activity, can generate peptide epitopes for immune surveillance. These ∼20 peptidases collectively behave as a guerrilla army partnering with the regular proteasome army in generating a variety of peptides for presentation by MHC-I and thus optimally signaling infection.
BackgroundThe fatty acid (FA) composition of adipose tissue influences the nutritional quality of meat products. The unsaturation level of FAs is determined by fatty acid desaturases such as stearoyl-CoA desaturases (SCDs), which are under control of the transcription factor sterol regulatory element-binding protein (SREBP). Differences in SCD genotype may thus confer variations in lipid metabolism and FA content among cattle breeds. This study investigated correlations between FA composition and lipogenic gene expression levels in the subcutaneous adipose tissue of beef cattle breeds of different gender from the Basque region of northern Spain. Pirenaica is the most important beef cattle breed in northern Spain, while Salers cattle and Holstein-Friesian cull cows are also an integral part of the regional beef supply.ResultsPirenaica heifers showed higher monounsaturated FA (MUFA) and conjugated linoleic acid (CLA) contents in subcutaneous adipose tissue than other breeds (P < 0.001). Alternatively, Salers bulls produced the highest oleic acid content, followed by Pirenaica heifers (P < 0.001). There was substantial variability in SCD gene expression among breeds, consistent with these differences in MUFA and CLA content. Correlations between SCD1 expression and most FA desaturation indexes (DIs) were positive in Salers (P < 0.05) and Pirenaica bulls, while, in general, SCD5 expression showed few significant correlations with DIs. There was a significant linear correlation between SCD1 and SRBEP1 in all breeds, suggesting strong regulation of SCD1 expression by SRBEP1. Pirenaica heifers showed a stronger correlation between SCD1 and SREBP1 than Pirenaica bulls. We also observed a opposite relationship between SCD1 and SCD5 expression levels and opposite associations of isoform expression levels with the ∆9 desaturation indexes.ConclusionsThese results suggest that the relationships between FA composition and lipogenic gene expression are influenced by breed and sex. The opposite relationship between SCD isoforms suggests a compensatory regulation of total SCD activity, while opposite relationships between SCD isoforms and desaturation indexes, specially 9c-14:1 DI, previously reported as an indicator of SCD activity, may reflect distinct activities of SCD1 and SCD5 in regulation of FA content. These findings may be useful for beef/dairy breeding and feeding programs to supply nutritionally favorable products.
Oxidative stress plays an important part in amnestic mild cognitive impairment (aMCI), the prodromal phase of Alzheimer's disease (AD). Recent evidence shows that polymorphisms in the SOD2 gene affect the elimination of the reactive oxygen species (ROS) generated in mitochondria. The aim of this study was to determine whether the functional rs4880 SNP in the SOD2 gene is a risk factor associated with aMCI and sporadic AD. 216 subjects with aMCI, 355 with AD, and 245 controls have been studied. The SNP rs4880 of the SOD2 gene was genotyped by RT-PCR and the APOE genotype was determined by PCR and RFLPs. Different multinomial logistic regression models were used to determine the risk levels for aMCI and AD. Although the T allele of the SOD2 rs4880 SNP gene (rs4880-T) is not an independent risk for aMCI or AD, this allele increases the risk to aMCI patients carrying at least one APOEε4 allele. Moreover, rs4880-T allele and APOEε4 allele combination has been found to produce an increased risk for AD compared to aMCI reference patients. These results suggest that APOEε4 and rs4880-T genotype may be a risk for aMCI and a predictor of progression from aMCI to AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.