Background and purposeTwo techniques for metal artefact reduction for computed tomography were studied in order to identify their impact on tumour delineation in radiotherapy.Materials and methodsUsing specially designed phantoms containing metal implants (dental, spine and hip) as well as patient images, we investigated the impact of two methods for metal artefact reduction on (A) the size and severity of metal artefacts and the accuracy of Hounsfield Unit (HU) representation, (B) the visual impact of metal artefacts on image quality and (C) delineation accuracy. A metal artefact reduction algorithm (MAR) and two types of dual energy virtual monochromatic (DECT VM) reconstructions were used separately and in combination to identify the optimal technique for each implant site.ResultsThe artefact area and severity was reduced (by 48–76% and 58–79%, MAR and DECT VM respectively) and accurate Hounsfield-value representation was increased by 22–82%. For each energy, the observers preferred MAR over non-MAR reconstructions (p < 0.01 for dental and hip cases, p < 0.05 for the spine case). In addition, DECT VM was preferred for spine implants (p < 0.01). In all cases, techniques that improved target delineation significantly (p < 0.05) were identified.ConclusionsDECT VM and MAR techniques improve delineation accuracy and the optimal of reconstruction technique depends on the type of metal implant.
Metal artefacts in PET/CT images hamper diagnostic accuracy in head and neck cancer (HNC). The aim of this study is to characterise the clinical effects of metal artefacts on PET/CT in HNC and to inform decision-making concerning implementation of MAR techniques. We study a combined dual energy CT and inpainting-based metal artefact reduction (DECT-I-MAR) technique for PET/CT in three settings: (A) A dental phantom with a removable amalgam-filled tooth to evaluate the PET error in comparison to a known reference. (B) PET-positive patients with metallic implants to demonstrate the relationship between CT metal artefacts and PET error. (C) Metabolic tumour volumes delineated in PET-positive patients with metal implants to evaluate the clinical impact. In (A) DECT-I-MAR reduced the PET error significantly. In (B) we demonstrate an increasing PET error with increasing CT artefact severity in patients. In (C) it is shown that the presence of artefacts in the same axial slices as the tumour significantly decreases biomarker stability and increase delineation variability. This work shows the practical feasibility of DECT-I-MAR-based PET/CT imaging, and indicates a positive clinical impact of using the technique routinely for HNC patients. The impact of CT artefacts on PET is considerable, especially in workflows where quantitative PET biomarkers and tumour volumes are used. In such cases, and for patients with tumours in proximity of metals, we recommend that a MAR technique for PET/CT is employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.