Recent research suggests that domesticated species – due to artificial selection by humans for specific, preferred behavioral traits – are better than wild animals at responding to visual cues given by humans about the location of hidden food. \Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses) and wild (including wolves and chimpanzees) animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus) on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7) in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants’ inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation.
Abstract. There has been a substantial growth in the wind energy power capacity worldwide, and icing difficulties have been encountered in cold climate locations. Rotor blade icing has been recognized as an issue, and solutions to mitigate accretion effects have been identified. Wind turbines are adapting helicopter rotor and propeller ice protection approaches to reduce aerodynamic performance degradation related to ice formation. Electro-thermal heating is one of the main technologies used to protect rotors from ice accretion, and it is one of the main technologies being considered to protect wind turbines. In this research, the design process required to develop an ice protection system for wind turbines is discussed. The design approach relies on modeling and experimental testing. Electro-thermal heater system testing was conducted at the Adverse Environment Rotor Test Stand at Penn State, where wind turbine representative airfoils protected with electro-thermal deicing were tested at representative centrifugal loads and flow speeds. The wind turbine sections tested were half-scale models of the 80 % span region of a generic 1.5 MW wind turbine blade. The icing cloud impact velocity was matched to that of a 1.5 MW wind turbine at full power production. Ice accretion modeling was performed to provide an initial estimate of the power density required to de-bond accreted ice at a set of icing conditions. Varying icing conditions were considered at −8 ∘C with liquid water contents of the cloud varying from 0.2 to 0.9 g/m3 and water droplets from 20 µm median volumetric diameter to 35 µm. Then, ice accretion thickness gradients along the span of the rotor blade for the icing conditions were collected experimentally. Given a pre-determined maximum power allocated for the deicing system, heating the entire blade was not possible. Heating zones were introduced along the span and the chord of the blade to provide the required power density needed to remove the accreted ice. The heating sequence for the zones started at the tip of the blade, to allow de-bonded ice to shed off along the span of the rotor blade. The continuity of the accreted ice along the blade span means that when using a portioned heating zone, ice could de-bond over that specific zone, but the ice formation could remain attached cohesively as it is connected to the ice on the adjacent inboard zone. To prevent such cohesive retention of de-bonded ice sections, the research determined the minimum ice thickness required to shed the accreted ice mass with the given amount of power availability. The experimentally determined minimum ice thickness for the varying types of ice accreted creates sufficient tensile forces due to centrifugal loads to break the cohesive ice forces between two adjacent heating zones. The experimental data were critical in the design of a time sequence controller that allows consecutive deicing of heating zones along the span of the wind turbine blade. Based on the experimental and modeling efforts, deicing a representative 1.5 MW wind turbine with a 100 kW power allocation required four sections along the blade span, with each heater section covering 17.8 % span and delivering a 2.48 W/in.2 (0.385 W/cm2) power density.
Abstract. Electro-thermal heating is one of the main technologies used to protect rotors from ice accretion and it is one of the main technologies being considered to protect wind turbines. The design process required to develop an ice protection system for wind turbines is detailed. Three icing conditions were considered: Light, Medium and Severe. Light icing conditions were created using clouds at −8 °C with a 0.2 g/m3 liquid water content (LWC) and water droplets of 20 µm median volumetric diameter (MVD). Medium icing condition clouds had a LWC of 0.4 g/m3 and 20 μm MVD, also at −8 °C. Severe icing conditions had an LWC of 0.9 g/m3 and 35 μm MVD at −8 °C. Wind turbine representative airfoils protected with electro-thermal de-icing were modeled and tested at representative centrifugal loads and flow speeds. The wind turbine sections used were 1/2 scale models of the 80 % span region of a generic 1.5 MW wind turbine blade. Based on experimental and modeling efforts, de-icing a representative 1.5 MW wind turbine with a 100 kW power allocation required four sections along the span, with each heater section covering 17.8 % span and delivering a 2.48 W/in2 (0.385 W/cm2) power density. The time sequences for the controller required approximately 10 minutes for each cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.