We present two recently released R packages, DiceKriging and DiceOptim, for the approximation and the optimization of expensive-to-evaluate deterministic functions. Following a self-contained mini tutorial on Kriging-based approximation and optimization, the functionalities of both packages are detailed and demonstrated in two distinct sections. In particular, the versatility of DiceKriging with respect to trend and noise specifications, covariance parameter estimation, as well as conditional and unconditional simulations are illustrated on the basis of several reproducible numerical experiments. We then put to the fore the implementation of sequential and parallel optimization strategies relying on the expected improvement criterion on the occasion of DiceOptim's presentation. An appendix is dedicated to complementary mathematical and computational details.
International audienceThis paper deals with the problem of estimating the volume of the excursion set of a function $f:\mathbb{R}^d \to \mathbb{R}$ above a given threshold, under a probability measure on $\RR^d$ that is assumed to be known. In the industrial world, this corresponds to the problem of estimating a probability of failure of a system. When only an expensive-to-simulate model of the system is available, the budget for simulations is usually severely limited and therefore classical Monte Carlo methods ought to be avoided. One of the main contributions of this article is to derive SUR (stepwise uncertainty reduction) strategies from a Bayesian-theoretic formulation of the problem of estimating a probability of failure. These sequential strategies use a Gaussian process model of $f$ and aim at performing evaluations of $f$ as efficiently as possible to infer the value of the probability of failure. We compare these strategies to other strategies also based on a Gaussian process model for estimating a probability of failure
Responses of many real-world problems can only be evaluated perturbed by noise. In order to make an efficient optimization of these problems possible, intelligent optimization strategies successfully coping with noisy evaluations are required. In this article, a comprehensive review of existing kriging-based methods for the optimization of noisy functions is provided. In summary, ten methods for choosing the sequential samples are described using a unified formalism. They are compared on analytical benchmark problems, whereby the usual assumption of homoscedastic Gaussian noise made in the underlying models is meet. Different problem configurations (noise level, maximum number of observations, initial number of observations) and setups (covariance functions, budget, initial sample size) are considered. It is found that the choices of the initial sample size and the covariance function are not critical. The choice of the method, however, can result in significant differences in the performance. In particular, the three most intuitive criteria are found as poor alternatives. Although no criterion is found consistently more efficient than the others, two specialized methods appear more robust on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.