We present the latest progress on the industrial scale coating facility for the Advanced Telescope for High-ENergy Astrophysics (ATHENA) mission. The facility has been successfully commissioned and tested, completing an important milestone in preparation of the Silicon Pore Optics (SPO) production capability. We qualified the coating facility by depositing iridium and boron carbide thin films in different configurations under various process conditions including pre-coating in-system plasma cleaning. The thin films were characterized with X-Ray Reflectometry (XRR) using laboratory X-ray sources Cu K-α at 8.048 keV and PTB's four-crystal monochromator beamline at the synchrotron radiation facility BESSY II in the energy range from 3.6 keV to 10.0 keV. Additional X-ray Photoelectron Spectroscopy (XPS) measurements were performed with Al K-α radiation to analyze the composition of the deposited thin films.
Excellent X-ray reflective mirror coatings are key in order to meet the performance requirements of the ATHENA telescope. The baseline coating design of ATHENA was initially formed by Ir/B 4 C but extensive studies have identified critical issues with the stability of the B 4 C top layer which shows strong evolution over time and appears incompatible with the industrialization processes required for the production of mirror modules. Motivated by the need for a compatible top layer material to improve the telescope performance at low energies and based on simulated performance, a SiC top layer has been selected as the best substitute to B 4 C. We report the latest development of Ir/SiC bilayer coatings optimized for ATHENA and the characterization of coating performance and stability.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.