Dependence receptors (DRs) now form a family of more than a dozen membrane receptors that are not linked by their structure, but by common functional traits. The most notable is their ability to trigger two opposite signaling pathways: in the presence of ligand, these receptors activate classic signaling pathways implicated in cell survival, migration and differentiation. In the absence of ligand, they do not stay inactive, rather they elicit an apoptotic signal. Thus, cells expressing this kind of receptor are dependent on the presence of ligand in the extracellular environment to survive. This review will recapitulate the increasing data regarding the molecular mechanisms associated with DRs, their potential implication during development, as well as their deregulation during tumorigenesis and, finally, their emergence as new possible therapeutic targets for cancer treatment.
Netrin-1 has been shown to be up-regulated in a fraction of human cancers as a mechanism to allow these tumors to escape the pro-apoptotic activity of some of its main dependence receptors, the UNC5 homologs (UNC5H). Here we identify the V-2 domain of netrin-1 to be important for its interaction with the Ig1/Ig2 domains of UNC5H2. We generate a humanized anti-netrin-1 antibody that disrupts the interaction between netrin-1 and UNC5H2 and triggers death of netrin-1-expressing tumor cells in vitro. We also present evidence that combining the anti-netrin-1 antibody with epidrugs such as decitabine could be effective in treating tumors showing no or modest netrin-1 expression. These results support that this antibody is a promising drug candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.