Selective neuronal death in the CA1 sector of the hippocampus [delayed neuronal death (DND)] develops several days after transient global cerebral ischemia in rodents. Because NGF plays a potential role in neuronal survival, it was decided to study its effect in DND. We report here that intraventricular injection of NGF either before or after 5 min forebrain ischemia in the Mongolian gerbil significantly reduced the occurrence of DND. The tissue content of NGF in the hippocampus was decreased 2 d after ischemia and recovered to the preischemic level by 1 week. By the Golgi staining technique, changes first began in the dendrites of affected neurons as early as 3 hr. Such changes could be ameliorated by NGF treatment. Although previous knowledge of NGF is limited to the survival of cholinergic neurons in the CNS, it is assumed that other mechanisms must be operating in the hippocampus, for example, postsynaptic modification at dendrites or aberrant expression of NGF receptors possibly at the initial excitation period by glutamate. Furthermore, because previous work has shown that inhibition of protein synthesis reduces the occurrence of DND, a program leading to cell death might also be operating via de novo synthesis of certain protein(s), collectively termed “killer protein,” because of a lack of NGF.
Predonation assessment of fear of blood draws may help to identify donors who are most likely to benefit from brief interventions designed to enhance donor coping, reduce risk of presyncopal reactions, and increase donor retention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.