Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.
There is a need for enabling non-viral nanobiotechnology to allow safe and effective gene therapy and cell therapy, which can be utilized to treat devastating diseases such as brain cancer. Human adipose-derived mesenchymal stem cells (hAMSCs) display high anti-glioma tropism and represent a promising delivery vehicle for targeted brain tumor therapy. In this study, we demonstrate that non-viral, biodegradable polymeric nanoparticles (NPs) can be used to engineer hAMSCs with higher efficacy (75% of cells) than leading commercially available reagents and high cell viability. To accomplish this, we engineered a poly(beta-amino ester) (PBAE) polymer structure to transfect hAMSCs with significantly higher efficacy than Lipofectamine™ 2000. We then assessed the ability of NP-engineered hAMSCs to deliver bone morphogenetic protein 4 (BMP4), which has been shown to have a novel therapeutic effect by targeting human brain tumor initiating cells (BTIC), a source of cancer recurrence, in a human primary malignant glioma model. We demonstrated that hAMSCs genetically engineered with polymeric nanoparticles containing BMP4 plasmid DNA (BMP4/NP-hAMSCs) secrete BMP4 growth factor while maintaining their multipotency and preserving their migration and invasion capacities. We also showed that this approach can overcome a central challenge for brain therapeutics, overcoming the blood brain barrier, by demonstrating that NP-engineered hAMSCs can migrate to the brain and penetrate the brain tumor after both intranasal and systemic intravenous administration. Critically, athymic rats bearing human primary BTIC-derived tumors and treated intranasally with BMP4/NP-hAMSCs showed significantly improved survival compared to those treated with control GFP/NP-hAMCSs. This study demonstrates that synthetic polymeric nanoparticles are a safe and effective approach for stem cell-based cancer-targeting therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.