We studied the structure of the C terminus of the Shaker potassium channel. The 3D structures of the full-length and a C-terminal deletion (⌬C) mutant of Shaker were determined by electron microscopy and single-particle analysis. The difference map between the full-length and the truncated channels clearly shows a compact density, located on the sides of the T1 domain, that corresponds to a large part of the C terminus. We also expressed and purified both WT and ⌬C Shaker, assembled with the rat Kv2-subunit. By using a difference map between the full-length and truncated Shaker ␣- complexes, a conformational change was identified that shifts a large part of the C terminus away from the membrane domain and into close contact with the -subunit. This conformational change, induced by the binding of the Kv2-subunit, suggests a possible mechanism for the modulation of the K ؉ voltage-gated channel function by its -subunit.C-terminal deletion ͉ electron microscopy ͉ single-particle analysis
Regulatory KChIP2 subunits assemble with pore-forming Kv4.2 subunits in 4:4 complexes to produce native voltage-gated potassium (Kv) channels like cardiac I(to) and neuronal I(A) subtypes. Here, negative stain electron microscopy (EM) and single particle averaging reveal KChIP2 to create a novel approximately 35 x 115 x 115 Angstrom, intracellular fenestrated rotunda: four peripheral columns that extend down from the membrane-embedded portion of the channel to enclose the Kv4.2 "hanging gondola" (a platform held beneath the transmembrane conduction pore by four internal columns). To reach the pore from the cytosol, ions traverse one of four external fenestrae to enter the rotundal vestibule and then cross one of four internal windows in the gondola.
Temporal and spatial changes in the enzootic activity of western equine encephalomyelitis (WEE) and St. Louis encephalitis (SLE) viruses were monitored at representative wetland study sites in the Coachella, San Joaquin, and Sacramento valleys of California from 1996 to 1998 using three methods: (1) virus isolation from pools of 50 host-seeking Culex tarsalis Coquillett females, (2) seroconversions in flocks of 10 sentinel chickens, and (3) seroprevalence in wild birds collected by mist nets and grain baited traps. Overall, 74 WEE and one SLE isolates were obtained from 222,455 Cx. tarsalis females tested in 4,988 pools. In addition, 133 and 40 seroconversions were detected in 28 chicken flocks, and 143 and 27 of 20,192 sera tested from 149 species of wild birds were positive for antibodies to WEE and SLE, respectively. WEE was active in all three valleys, whereas SLE only was detected in Coachella Valley. Seroconversions in sentinel chickens provided the most sensitive indication of enzootic activity and were correlated with seroprevalence rates in wild birds. Avian seroprevalence rates did not provide an early warning of pending enzootic activity in chickens, because positive sera from after hatching year birds collected during spring most probably were the result of infections acquired during the previous season. Few seroconversions were detected among banded recaptured birds collected during spring and early summer. Age and resident status, but not sex, were significant risk factors for wild bird infection, with the highest seroprevalence rates among after hatching year individuals of permanent resident species. Migrants (with the exception of mourning doves) and winter resident species rarely were positive. House finches, house sparrows, Gambel's quail, California quail, common ground doves, and mourning doves were most frequently positive for antibodies. The initial detection of enzootic activity each summer coincided closely with the appearance of hatching year birds of these species in our study areas, perhaps indicating their role in virus amplification. Bird species most frequently positive roosted or nested in elevated upland vegetation, sites where Cx. tarsalis host-seeking females hunt most frequently. These serosurveys provided important background information for planned host competence and chronic infection studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.