The intensity interferometry technique, commonly referred to as the Hanbury-Brown/Twiss effect, has been applied to nuclear and elementary-particle collisions as a method of investigating their space-time evolution. In this review the theoretical framework of the technique is presented, describing the formulations in common use. A survey is made of its application to subatomic collisions, ranging from highenergy elementary-particle reactions to low-energy nuclear reactions. Results derived from experimental data analysis are compiled and discussed. A critique is made of the interpretational difficulties associated with the use of the technique in reaction studies.
Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effective potentials. The number of degrees of freedom of the system are thereby reduced to a range that is computationally tractable. Three effective models for the triangulated cytoskeleton are developed: two models in which the cytoskeleton is stress-free and does or does not have internal attractive interactions, and a third model in which the cytoskeleton is prestressed in situ. These are employed in direct, finite-temperature simulations of erythrocyte deformation in a micropipette. All three models show reasonable agreement with aspiration measurements made on flaccid human erythrocytes, but the prestressed model alone yields optimal agreement with fluorescence imaging experiments. Ensemble-averaging of nonaxisymmetrical, deformed structures exhibiting anisotropic strain are thus shown to provide an answer to the basic question of how a triangulated mesh such as that of the red cell cytoskeleton deforms in experiment.
Aimed at senior undergraduates and graduate students in science and biomedical engineering, this text explores the architecture of a cell's envelope and internal scaffolding, and the properties of its soft components. The book first discusses the properties of individual flexible polymers, networks and membranes, and then considers simple composite assemblages such as bacteria and synthetic cells. The analysis is performed within a consistent theoretical framework, although readers can navigate from the introductory material to results and biological applications without working through the intervening mathematics. This, together with a glossary of terms and appendices providing quick introductions to chemical nomenclature, cell structure, statistical mechanics and elasticity theory, make the text suitable for readers from a variety of subject backgrounds. Further applications and extensions are handled through problem sets at the end of each chapter and supplementary material available on the Internet.
Exploring the mechanical features of biological cells, including their architecture and stability, this textbook is a pedagogical introduction to the interdisciplinary fields of cell mechanics and soft matter physics from both experimental and theoretical perspectives. This second edition has been greatly updated and expanded, with new chapters on complex filaments, the cell division cycle, the mechanisms of control and organization in the cell, and fluctuation phenomena. The textbook is now in full color which enhances the diagrams and allows the inclusion of new microscopy images. With around 280 end-of-chapter exercises exploring further applications, this textbook is ideal for advanced undergraduate and graduate students in physics and biomedical engineering. A website hosted by the author contains extra support material, diagrams and lecture notes, and is available at www.cambridge.org/Boal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.