Increased transcriptional activity of -catenin resulting from Wnt/Wingless-dependent or -independent signaling has been detected in many types of human cancer, but the underlying mechanism of Wnt-independent regulation is poorly understood. We have demonstrated that AKT, which is activated downstream from epidermal growth factor receptor signaling, phosphorylates -catenin at Ser 552 in vitro and in vivo. AKTmediated phosphorylation of -catenin causes its disassociation from cell-cell contacts and accumulation in both the cytosol and the nucleus and enhances its interaction with 14-3-3 via a binding motif containing Ser 552 . Phosphorylation of -catenin by AKT increases its transcriptional activity and promotes tumor cell invasion, indicating that AKT-dependent regulation of -catenin plays a critical role in tumor invasion and development.
DNA breaks are extremely harmful lesions that need to be repaired efficiently throughout the genome. However, the packaging of DNA into nucleosomes is a significant barrier to DNA repair, and the mechanisms of repair in the context of chromatin are poorly understood. Here we show that lysine 56 (K56) acetylation is an abundant modification of newly synthesized histone H3 molecules that are incorporated into chromosomes during S phase. Defects in the acetylation of K56 in histone H3 result in sensitivity to genotoxic agents that cause DNA strand breaks during replication. In the absence of DNA damage, the acetylation of histone H3 K56 largely disappears in G2. In contrast, cells with DNA breaks maintain high levels of acetylation, and the persistence of the modification is dependent on DNA damage checkpoint proteins. We suggest that the acetylation of histone H3 K56 creates a favourable chromatin environment for DNA repair and that a key component of the DNA damage response is to preserve this acetylation.
SUMMARY Tumor-specific pyruvate kinase M2 (PKM2) is essential for the Warburg effect. Besides its well-established role in aerobic glycolysis, PKM2 directly regulates gene transcription. However, the mechanism underlying this nonmetabolic function of PKM2 remains elusive. We show here that PKM2 directly binds to histone H3 and phosphorylates histone H3 at T11 upon EGF receptor activation. This phosphorylation is required for the dissociation of HDAC3 from the CCND1 and MYC promoter regions and subsequent acetylation of histone H3 at K9. PKM2-dependent histone H3 modifications are instrumental in EGF-induced expression of cyclin D1 and c-Myc, tumor cell proliferation, cell cycle progression, and brain tumorigenesis. In addition, levels of histone H3 T11 phosphorylation correlate with nuclear PKM2 expression levels, glioma malignancy grades, and prognosis. These findings highlight the role of PKM2 as a protein kinase in its nonmetabolic functions of histone modification, which is essential for its epigenetic regulation of gene expression and tumorigenesis.
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike the nucleoplasmic MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus, the molecular target, and the mechanism of its p53-independent function remains unclear. Here we show that ARF interacts with B23, a multifunctional nucleolar protein involved in ribosome biogenesis, and promotes its polyubiquitination and degradation. Overexpression of B23 induces a cell cycle arrest in normal fibroblasts, whereas in cells lacking p53 it promotes S phase entry. Conversely, knocking down B23 inhibits the processing of preribosomal RNA and induces cell death. Further, oncogenic Ras induces B23 only in ARF null cells, but not in cells that retain wild-type ARF. Together, our results reveal a molecular mechanism of ARF in regulating ribosome biogenesis and cell proliferation via inhibiting B23, and suggest a nucleolar role of ARF in surveillance of oncogenic insults.
Although long noncoding RNAs (lncRNAs) predominately reside in nuclear and exert their functions in many biological processes, their potential involvement in cytoplasmic signal transduction remains unexplored. Here, we identified a cytoplasmic lncRNA, Long-Intergenic Noncoding RNA for Kinase Activation (LINK-A), which mediates HB-EGF triggered, EGFR:GPNMB heterodimer-dependent HIF1α phosphorylation at Tyr565 and Ser797 by BRK and LRRK2 respectively. These events cause HIF1α stabilization, HIF1α-p300 interaction, and activation of HIF1α transcriptional programs under normoxic conditions. Mechanistically, LINK-A facilitates the recruitment of BRK to EGFR:GPNMB complex and BRK kinase activation. The BRK-dependent HIF1α Tyr565 phosphorylation interferes with Pro564 hydroxylation, leading to normoxic HIF1α stabilization. Both LINK-A and LINK-A-dependent signaling pathway activation correlate with TNBC, promoting breast cancer glycolysis reprogramming and tumorigenesis. Our findings illustrate the magnitude and diversity of cytoplasmic lncRNAs in signal transduction and highlight the important roles of lncRNAs in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.