Indoleamine 2,3-dioxygenase (IDO) is an enzyme that degrades the essential amino acid tryptophan. The concept that cells expressing IDO can suppress T-cell responses and promote tolerance is a relatively new paradigm in immunology. Considerable evidence now supports this hypothesis, including studies of mammalian pregnancy, tumour resistance, chronic infections and autoimmune diseases. In this review, we summarize key recent developments and propose a unifying model for the role of IDO in tolerance induction.
Sustained access to nutrients is a fundamental biological need, especially for proliferating cells, and controlling nutrient supply is an ancient strategy to regulate cellular responses to stimuli. By catabolizing the essential amino acid tryptophan, cells expressing the enzyme indoleamine 2,3 dioxygenase (IDO) can mediate potent local effects on innate and adaptive immune responses to inflammatory insults. Here, we discuss recent progress in elucidating how IDO activity promotes local metabolic changes that impact cellular and systemic responses to inflammatory and immunologic signals. These recent developments identify potential new targets for therapy in a range of clinical settings, including cancer, chronic infections, autoimmune and allergic syndromes, and transplantation.
Tumors arise from normal cells of the body through genetic mutation. Although such genetic mutation often leads to the expression of abnormal antigens, the immune system fails to respond effectively to these antigens; that is, it is tolerant of these antigens. This acquired state of tolerance must be overcome for cancer immunotherapy to succeed. Indoleamine 2,3-dioxygenase (IDO) is one molecular mechanism that contributes to tumor-induced tolerance. IDO helps create a tolerogenic milieu in the tumor and the tumor-draining lymph nodes, both by direct suppression of T cells and enhancement of local Treg-mediated immunosuppression. It can also function as an antagonist to other activators of antitumor immunity. Therefore, strategies to block IDO might enhance the effectiveness of tumor immunotherapy.
Indoleamine 2,3-dioxygenase (IDO) has immunoregulatory roles associated tryptophan metabolism. These include counter-regulation (controlling inflammation) and acquired tolerance in T cells. Recent findings reveal that IDO can be triggered by innate responses during tumorigenesis, and also by attempted T cell activation, either spontaneous or due to immunotherapy. Here we review the current understanding of mechanisms by which IDO participates in the control of inflammation and in peripheral tolerance. Focusing on the tumor microenvironment, we examine the role of IDO in response to apoptotic cells and the impact of IDO on Treg cell function. We discuss how the counter-regulatory and tolerogenic functions of IDO can be targeted for cancer immunotherapy and present an overview of the current clinical progress in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.