Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convectivereactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with a He-burning zone, for example in convectively unstable shell on top of electron-degenerate cores in AGB stars, young white dwarfs or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content, such as the first stars. We have carried out detailed nucleosynthesis simulations based on stellar evolution models and informed by hydrodynamic simulations. We focus on the convective-reactive episode in the very-late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund et al. (1999) determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He intershell ( few 10 11 cm −3 ) that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out 3D hydrodynamic He-shell flash convection simulations in 4π geometry to study the entrainment of H-rich material. Guided by these simulations we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone into the original one driven by He-burning and a new one driven by the rapid burning of ingested H. By making such mixing assumptions that are motivated by our hydrodynamic simulations we obtain significantly higher neutron densities (∼ few 10 15 cm −3 ) and reproduce the key observed abundance trends found in Sakurai's object. These include an overproduction of Rb, Sr and Y by about 2 orders of magnitude higher than the overproduction of Ba and La. Such a peculiar nucleosynthesis signature is impossible to obtain with the mixing predictions in our one-dimensional stellar evolution models. The simulated Li abundance and the isotopic ratio 12 C/ 13 C are as well in agreement with observations. Details of the observed heavy element abundances can be used as a sensitive diagnostic tool for the neutron density, for the neutron exposure and, in general, for the physics of the convective-reactive phases in stellar evolution. For example, the high elemental ratio Sc/Ca and the high Sc production indicate high neutron densities. The diagnostic value of such abundance markers depends on uncertain nuclear physics input. We determine how our results depend on uncertainties of nuclear reaction rates, for example for the 13 C(α, n) 16 O reaction. 10 Although even in this case multi-dimensional effects of convection have to be taken into account eventually as simulations by indicate that the velocity profile at the bottom of the convective shell is ...
We analyze data from high resolution simulations of the generation of compressible, magnetohydrodynamic (MHD) turbulence with properties chosen to resemble conditions in galaxy clusters. In particular, the flow is driven to have turbulence Mach number M t ∼ 1/2 in an isothermal medium with an initially very weak, uniform seed magnetic field (β = P g /P B = 10 6 ). Since cluster turbulence is likely to result from a mix of sheared (solenoidal) and compressive forcing processes, we examine the distinct turbulence properties for both cases. In one set of simulations velocity forcing is entirely solenoidal (∇ · δ u = 0), while in the other it is entirely compressive (∇ × δ u = 0). Both cases develop a mixture of solenoidal and compressive turbulent motions, since each generates the other. The development of compressive turbulent motions leads to shocks, even when the turbulence is solenoidally forced and subsonic. Shocks, in turn, produce and amplify vorticity, which is especially important in compressively forced turbulence. To clarify those processes we include a pair of appendices that look in detail at vorticity evolution in association with shocks. From our simulation analyses we find that magnetic fields amplified to near saturation levels in predominantly solenoidal turbulence can actually enhance vorticity on small scales by concentrating and stabilizing shear. The properties, evolution rates and relative contributions of the kinetic and magnetic turbulent elements depend strongly on the character of the forcing. Specifically, shocks are stronger, but vorticity evolution and magnetic field amplification are slower and weaker when the turbulence is compressively forced. We identify a simple relation to estimate characteristic shock strengths in terms of the turbulence Mach number and the character of the forcing. Our results will be helpful in understanding flow motions in galaxy clusters.
Turbulence is a key ingredient for the evolution of the intracluster medium, whose properties can be predicted with high resolution numerical simulations. We present initial results on the generation of solenoidal and compressive turbulence in the intracluster medium during the formation of a small-size cluster using highly resolved, non-radiative cosmological simulations, with a refined monitoring in time. In this first of a series of papers, we closely look at one simulated cluster whose formation was distinguished by a merger around z ∼ 0.3. We separate laminar gas motions, turbulence and shocks with dedicated filtering strategies and distinguish the solenoidal and compressive components of the gas flows using Hodge-Helmholtz decomposition. Solenoidal turbulence dominates the dissipation of turbulent motions (∼ 95%) in the central cluster volume at all epochs. The dissipation via compressive modes is found to be more important (∼ 30% of the total) only at large radii ( 0.5 r vir ) and close to merger events. We show that enstrophy (vorticity squared) is good proxy of solenoidal turbulence. All terms ruling the evolution of enstrophy (i.e. baroclinic, compressive, stretching and advective terms) are found to be significant, but in amounts that vary with time and location. Two important trends for the growth of enstrophy in our simulation are identified: first, enstrophy is continuously accreted into the cluster from the outside, and most of that accreted enstrophy is generated near the outer accretion shocks by baroclinic and compressive processes. Second, in the cluster interior vortex stretching is dominant, although the other terms also contribute substantially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.