Dramatic advances in generative models have resulted in near photographic quality for artificially rendered faces, animals and other objects in the natural world. In spite of such advances, a higher level understanding of vision and imagery does not arise from exhaustively modeling an object, but instead identifying higher-level attributes that best summarize the aspects of an object. In this work we attempt to model the drawing process of fonts by building sequential generative models of vector graphics. This model has the benefit of providing a scale-invariant representation for imagery whose latent representation may be systematically manipulated and exploited to perform style propagation. We demonstrate these results on a large dataset of fonts and highlight how such a model captures the statistical dependencies and richness of this dataset. We envision that our model can find use as a tool for graphic designers to facilitate font design. * Work done as a member of the Google AI Residency Program (g. co/airesidency)
Learned Vector Graphics RepresentationPixel Counterpart moveTo (15, 25) lineTo (-2, 0.3) cubicBezier
In many reinforcement learning tasks, the goal is to learn a policy to manipulate an agent, whose design is fixed, to maximize some notion of cumulative reward. The design of the agent's physical structure is rarely optimized for the task at hand. In this work, we explore the possibility of learning a version of the agent's design that is better suited for its task, jointly with the policy. We propose an alteration to the popular OpenAI Gym framework, where we parameterize parts of an environment, and allow an agent to jointly learn to modify these environment parameters along with its policy. We demonstrate that an agent can learn a better structure of its body that is not only better suited for the task, but also facilitates policy learning. Joint learning of policy and structure may even uncover design principles that are useful for assisted-design applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.