Our data suggest that this association is more common than generally recognized and may be specific. Patients with t(8;21) should be observed closely for signs and symptoms of granulocytic sarcoma. These patients may have a less favorable prognosis than other patients with t(8;21). Cooperative oncology groups should retrospectively identify patients with AML and t(8;21) who had a poor outcome to determine if they had a disproportionate incidence of granulocytic sarcoma. If so, aggressive therapy such as bone marrow transplantation may be warranted early in the therapeutic strategy.
2-chlorodeoxyadenosine (2-CdA), a purine analog, has become universally accepted as the agent of choice in treating hairy cell leukemia (HCL). However, few studies have reported long-term outcomes after 2-CdA treatment. Between January 1990 and June 2003, 86 consecutive patients with HCL were treated with a single 7-day course of 2-CdA by continuous infusion at a dose of 0.1 mg/kg per day. Of the 86 patients (mean age: 49 years), 67 patients (79%) achieved a complete remission (CR); 18 patients (21%) achieved a partial remission (PR); and 1 patient's response was unable to be assessed. The progression-free survival (PFS) for initial relapse after 12 years was 54%. At a median follow-up of 9.7 years (range, 0.3-13.8 years), 31 (36%) of 85 patients relapsed. There were 23 relapsed patients treated with a second cycle of 2-CdA; 2 patients were treated with alternative agents; and 6 patients were observed. Of the 23 relapsed patients retreated with 2-CdA, 12 (52%) achieved a CR and 7 (30%) patients achieved a PR (overall response rate: 83%). The overall survival (OS) rate after 12 years was 87%. There were 15 patients (17%) who developed other malignancies. Long-term follow-up of up to 14 years (median: 9.7 years) showed an excellent PFS and OS for HCL patients after 2-CdA treatment.
Patients with acute promyelocytic leukemia (APL) are at high risk for the development of life-threatening thrombotic and hemorrhagic complications, particularly during induction chemotherapy. This propensity has been attributed to the release of tissue factor (TF)-like procoagulants from the leukemic cells leading to disseminated intravascular coagulation (DIC). However, recent data suggest that the pathogenesis of the coagulopathy is more complicated and may involve activation of the generalized proteolytic cascade resulting in either clotting and/or excessive fibrinolysis. Furthermore, controversy exists regarding the mechanism(s) responsible for the activation of either clotting or fibrinolysis. The malignant promyelocyte may act directly to activate coagulation and/or fibrinolysis. Alternatively, reactive inflammatory cells, which express procoagulant and/or profibrinolytic activities may play an essential role. A third possibility may involve endothelial cell expression of mediators with procoagulant/profibrinolytic properties. Putative profibrinolytic mechanisms include the release of urokinase-type and tissue-type plasminogen activators, decreases in plasminogen activator inhibitor-1 and 2, and decreases in alpha-2 plasmin inhibitor. Putative procoagulant mechanisms include the release of tissue factor, Cancer Procoagulant, or cytokines such as interleukin-1, tumor necrosis factor and vascular permeability factor. Putative anticoagulant mediators include annexins, a group of proteins in human tissue which bind phospholipids and have anticoagulant activity, which have been reported in patients with APL. The current treatment of APL is rapidly evolving because of the efficacy of all-trans retinoic acid (ATRA). All-trans retinoic acid promotes terminal differentiation of leukemic promyelocytes leading to complete remission in the majority of patients with APL with rapid resolution of the coagulopathy. Although the mechanism by which this occurs has not been established, preliminary data suggest that ATRA blocks the downregulation of the thrombomodulin gene and the up-regulation of the tissue factor gene induced by tumor necrosis factor. Since APL is a relatively uncommon disorder, the collaboration of cooperative oncology groups will be important to study patients receiving ATRA or conventional chemotherapy to further elucidate the mechanism(s) of the coagulopathy.
Summary Background Namodenoson, an A3 adenosine receptor (A3AR) agonist, improved liver function/pathology in non‐alcoholic steatohepatitis (NASH) preclinical models. Aim To evaluate the efficacy and safety of namodenoson for the treatment of non‐alcoholic fatty liver disease (NAFLD) with or without NASH Methods This phase 2 study included 60 patients with NAFLD (ALT ≥60 IU/L) who were randomised (1:1:1) to oral namodenoson 12.5 mg b.d. (n = 21), 25 mg b.d. (n = 19), or placebo (n = 20) for 12 weeks (total follow‐up: 16 weeks). The main efficacy endpoint involved serum ALT after 12 weeks of treatment. Results Serum ALT decreased over time with namodenoson in a dose‐dependent manner. The difference between change from baseline (CFB) for ALT in the namodenoson 25 mg b.d. arm vs placebo trended towards significance at 12 weeks (P = 0.066). Serum AST levels also decreased with namodenoson in a dose‐dependent manner; at 12 weeks, the CFB for 25 mg b.d. vs placebo was significant (P = 0.03). At Week 12, 31.6% in the namodenoson 25 mg b.d. arm and 20.0% in the placebo arm achieved ALT normalisation (P = 0.405). At week 16, the respective rates were 36.8% and 10.0% (P = 0.038). A3AR expression levels were stable over time across study arms. Both doses of namodenoson were well tolerated with no drug‐emergent severe adverse events, drug‐drug interactions, hepatotoxicity, or deaths. Three adverse events were considered possibly related to study treatment: myalgia (12.5 mg b.d. arm), muscular weakness (25 mg b.d. arm), and headache (25 mg b.d. arm). Conclusion A3AR is a valid target; namodenoson 25 mg b.d. was safe and demonstrated efficacy signals (ClinicalTrials.gov #NCT02927314).
The purine analog 2-CdA is an active salvage therapy in pretreated patients with indolent NHL, and deserves further assessment in untreated patients and in combination with other chemotherapy agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.