In this paper, we present a model which takes as input a corpus of images with relevant spoken captions and finds a correspondence between the two modalities. We employ a pair of convolutional neural networks to model visual objects and speech signals at the word level, and tie the networks together with an embedding and alignment model which learns a joint semantic space over both modalities. We evaluate our model using image search and annotation tasks on the Flickr8k dataset, which we augmented by collecting a corpus of 40,000 spoken captions using Amazon Mechanical Turk.
Given a collection of images and spoken audio captions, we present a method for discovering word-like acoustic units in the continuous speech signal and grounding them to semantically relevant image regions. For example, our model is able to detect spoken instances of the words "lighthouse" within an utterance and associate them with image regions containing lighthouses. We do not use any form of conventional automatic speech recognition, nor do we use any text transcriptions or conventional linguistic annotations. Our model effectively implements a form of spoken language acquisition, in which the computer learns not only to recognize word categories by sound, but also to enrich the words it learns with semantics by grounding them in images.
We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding zero resource (unsupervised) speech technologies and related models of early language acquisition. Centered around the tasks of phonetic and lexical discovery, we consider unified evaluation metrics, present two new approaches for improving speaker independence in the absence of supervision, and evaluate the application of Bayesian word segmentation algorithms to automatic subword unit tokenizations. Finally, we present two strategies for integrating zero resource techniques into supervised settings, demonstrating the potential of unsupervised methods to improve mainstream technologies.
In this paper, we explore neural network models that learn to associate segments of spoken audio captions with the semantically relevant portions of natural images that they refer to. We demonstrate that these audio-visual associative localizations emerge from network-internal representations learned as a by-product of training to perform an image-audio retrieval task. Our models operate directly on the image pixels and speech waveform, and do not rely on any conventional supervision in the form of labels, segmentations, or alignments between the modalities during training. We perform analysis using the Places 205 and ADE20k datasets demonstrating that our models implicitly learn semanticallycoupled object and word detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.