Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10–100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH+* and PAH2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.
Over the past decade or so, the state-of-the-art in the eld of chemical reaction dynamics has progressed from studies of few-atom systems to wide-ranging investigations into a variety of photoinduced and collision-induced processes in much larger molecules. Many of these studies are of direct relevance to a wide audience of chemists, spanning elds such as atmospheric chemistry, astrochemistry, synthetic chemistry, and chemical biology. Key to this work has been the technique of velocity-map imaging, which allows complete product scattering distributions to be recorded for the process of interest. Recent advances in
Using covariance analysis methods, we study the fragmentation dynamics of multiply ionized 1- and 2-iodopropane. Signatures of isomer-specific nuclear motion occurring during sequential fragmentation pathways are identified.
Ultrafast laser pump-probe methods allow chemical reactions to be followed in real time, and have provided unprecedented insight into fundamental aspects of chemical reactivity. While evolution of the electronic structure of the system under study is evident from changes in the observed spectral signatures, information on rearrangement of the nuclear framework is generally obtained indirectly. Disentangling contributions to the signal arising from competing photochemical pathways can also be challenging. Here we introduce the new technique of three-dimensional covariance-map Coulomb explosion imaging, which has the potential to provide complete three-dimensional information on molecular structure and dynamics as they evolve in real time during a gas-phase chemical reaction. We present first proof-of-concept data from recent measurements on CF3I. Our approach allows the contributions from competing fragmentation pathways to be isolated and characterised unambiguously, and is a promising route to enabling the recording of ‘molecular movies’ for a wide variety of gas-phase chemical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.