Fast track article for IS&T International Symposium on Electronic Imaging 2021: Computational Imaging proceedings.
Mass spectrometry imaging (MSI) enables label-free mapping of hundreds of molecules in biological samples with high sensitivity and unprecedented specificity. Conventional MSI experiments are relatively slow, limiting their utility for applications requiring rapid data acquisition, such as intraoperative tissue analysis or 3D imaging. Recent advances in MSI technology focus on improving the spatial resolution and molecular coverage, further increasing the acquisition time. Herein, a deep learning approach for dynamic sampling (DLADS) was employed to reduce the number of required measurements, thereby improving the throughput of MSI experiments in comparison with conventional methods. DLADS trains a deep learning model to dynamically predict molecularly informative tissue locations for active mass spectra sampling and reconstructs high-fidelity molecular images using only the sparsely sampled information. Experimental hardware and software integration of DLADS with nanospray desorption electrospray ionization (nano-DESI) MSI is reported for the first time, which demonstrates a 2.3-fold improvement in throughput for a linewise acquisition mode. Meanwhile, simulations indicate that a 5–10-fold throughput improvement may be achieved using the pointwise acquisition mode.
The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.HuBMAP was founded with the goal of establishing state-of-the-art frameworks for building spatial multiomic maps of non-diseased human organs at single-cell resolution 1 . During the first phase (2018)(2019)(2020)(2021)(2022), the priorities of the project included the validation and development of assay platforms; workflows for data processing, management, exploration and visualization; and the establishment of protocols, quality control standards and standard operating procedures. Extensive infrastructure was established through a coordinated effort among the various HuB-MAP integration, visualization and engagement teams, tissue-mapping centres, technology and tools development and rapid technology implementation teams and working groups 1 . Single-cell maps, predominantly consisting of two-dimensional (2D) spatial data as well as data from dissociated cells, were generated for several organs. The HuBMAP Data Portal (https://portal.hubmapconsortium.org) was established for open access to experimental tissue data and reference atlas data.The infrastructure was augmented with software tools for tissue data registration, processing, annotation, visualization, cell segmentation and automated annotation of cell types and cellular neighbourhoods from spatial data. Computational methods were developed for integrating multiple data types across scales and interpretation 2 . Standard reference terminology and a common coordinate framework spanning anatomical to biomolecular scales were established to ensure interoperability across organs, research groups and consortia 3 . Guidelines to capture high-quality multiplexed spatial data 4 were established including validated panels of cell-and structure-specific antibodies 5 . The first phase produced a large number of manuscripts (https://commonfund.nih.gov/ publications?pid=43) including spatially resolved single-cell maps [6][7][8][9][10][11] .The production phase of HuBMAP was launched in the autumn of 2022. The focus is on scaling data production spanning diverse biological variables (for example, age and ethnicity) and deployment and enhancement of analytical, visualization and navigational tools to generate high-resolution 3D accessible maps of major functional tissue units from more than 20 organs. This phase involves over 60 institutions and 400 researchers with opportunities for active intra-and inter-consortia collaborations and building a foundational resource for new biological insights and precision medicine. Below, ...
Mass spectrometry imaging (MSI) enables label-free mapping for hundreds of molecules in biological samples, with high sensitivity and unprecedented specificity. Conventional MSI experiments are relatively slow, limiting their utility for applications requiring rapid data acquisition, such as intraoperative tissue analysis or 3D imaging. Recent advances in MSI technology focus on improving spatial resolution and molecular coverage, further increasing acquisition times. Herein, a deep learning approach for dynamic sampling (DLADS) reduces the number of required measurements to improve MSI throughput, in comparison with conventional methods. DLADS trains a deep learning model to dynamically predict molecularly informative tissue locations for active mass spectra sampling and reconstructs high-fidelity molecular images, using only the sparsely sampled information. Hardware and software integration of DLADS with nanospray desorption electrospray ionization (nano-DESI) MSI demonstrates a 2.3-fold improvement in throughput with a line-wise acquisition mode. Meanwhile, simulations indicate that a 5 to 10-fold throughput improvement may be achieved using the pointwise acquisition mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.