Esta es la versión de autor del artículo publicado en: This is an author produced version of a paper published in:El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription ABSTRACT -The demonstration of plasmon-assisted lasing by associating optical gain media with plasmonic nanostructures has led to a new generation of nanophotonic devices with unprecedented performances. However, despite the variety of designs demonstrated so far, the operation of these systems is in most cases limited to a single output wavelength, and some reports on multiline emission refer to mixing single nanolasers with the subsequent limitation in compactness. Here, we show multiline operation from a single plasmon-assisted nonlinear solid-state laser on which a linear chain of Ag nanoparticles is deposited. The system provides lasing at 1.08 µm, which is self-converted to the visible range through different parametric frequency-mixing processes generated at metal-dielectric interfaces. Near infrared and simultaneously green and tunable blue radiation with a sub-wavelength confinement in the direction perpendicular to the nanoparticle chain, are obtained at room temperature in CW regime. The results demonstrate the possibility of multifunctional operation from a single plasmon-assisted laser, and offer new avenues for the development of highly integrable sources of coherent radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.