The clinical, radiological, and pathological findings in three siblings affected with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification have been reported. In an effort to explain the pleiotropic effects of the mutation producing this disorder, we postulated a defect in carbonic anhydrase H (CA II), the only one of the three soluble isozymes of carbonic anhydrase that is.known to be synthesized in kidney and brain. We report here biochemical and immunological evidence for the virtual absence of CA II in erythrocytes of patients affected with this condition, whereas CA I level is not reduced. Levels of CA II in erythrocyte hemolysates from asymptomatic obligate heterozygotes are about half of normal. These findings: (i) elucidate the basic defect in one form of inherited osteopetrosis; (ii) provide genetic evidence implicating CA II in osteoclast function and bone resorption; (iii) explain previous observations that carbonic anhydrase inhibitors block the normal parathyroid hormone-induced release of calcium from bone; (iv) clarify the role of renal CA H in urinary acidification and bicarbonate reabsorption; and (v) suggest a method to identify heterozygous carriers for the gene for this recessively inherited syndrome.
Although trichromacy in Old and New World primates is based on three visual pigments with spectral peaks in the violet (SW, shortwave), green (MW, middlewave) and yellow-green (LW, longwave) regions of the spectrum, the underlying genetic mechanisms differ. The SW pigment is encoded in both cases by an autosomal gene and, in Old World primates, the MW and LW pigments by separate genes on the X chromosome. In contrast, there is a single polymorphic X-linked gene in most New World primates with three alleles coding for spectrally distinct pigments. The one reported exception to this rule is the New World howler monkey that follows the Old World system of separate LW and MW genes. A comparison of gene sequences in these different genetic systems indicates that the duplication that gave rise to the separate MW and LW genes of Old World primates is more ancient than that in the howler monkey. In addition, the amino acid sequences of the two howler monkey pigments show similarities to the pigments encoded by the polymorphic gene of other New World primates. It would appear therefore that the howler monkey gene duplication arose after the split between New and Old World primates and was generated by an unequal crossover that placed two different forms of the New World polymorphic gene on to a single chromosome. In contrast, the lack of identity at variable sites within the New and Old World systems argues for the origin of the separate genes in Old World primates by the duplication of a single form of the gene followed by divergence to give spectrally distinct LW and MW pigments. In contrast, the similarity in amino acid variation across the tri-allelic system of New World primates indicates that this polymorphism had a single origin in New World primates. A striking feature of all these pigments is the use of a common set of substitutions at three amino acid sites to achieve the spectral shift from MW at around 530 nm to LW at around 560 nm. The separate origin of the trichromacy in New and Old World primates would indicate that the selection of these three sites is the result of convergent evolution, perhaps as a consequence of visual adaptation in both cases to foraging for yellow and orange fruits against a green foliage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.