Abstract. We analyze Darboux transformations in very general settings for multidimensional linear partial differential operators. We consider all known types of Darboux transformations, and present a new type. We obtain a full classification of all operators that admit Wronskian type Darboux transformations of first order and a complete description of all possible first-order Darboux transformations. We introduce a large class of invertible Darboux transformations of higher order, which we call Darboux transformations of continued Type I. This generalizes the class of Darboux transformations of Type I, which was previously introduced. There is also a modification of this type of Darboux transformations, continued Wronskian type, which generalize Wronskian type Darboux transformations.
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.