BackgroundMMP-13 and IGFBP-5 are important factors involved in osteoarthritis (OA). We investigated whether two highly predicted microRNAs (miRNAs), miR-140 and miR-27a, regulate these two genes in human OA chondrocytes.MethodsGene expression was determined by real-time PCR. The effect of each miRNA on IGFBP-5 and MMP-13 expression/production was evaluated by transiently transfecting their precursors (pre-miRNAs) and inhibitors (anti-miRNAs) into human OA chondrocytes. Modulation of IGFBP-5, miR-140 and miR-27a expression was determined upon treatment of OA chondrocytes with cytokines and growth factors.ResultsIGFBP-5 was expressed in human chondrocytes with its level significantly lower (p < 0.04) in OA. Five computational algorithms identified miR-140 and miR-27a as possible regulators of MMP-13 and IGFBP-5 expression. Data showed that both miRNAs were expressed in chondrocytes. There was a significant reduction (77%, p < 0.01) in miR-140 expression in OA compared to the normal chondrocytes, whereas miR-27a expression was only slightly decreased (23%). Transfection with pre-miR-140 significantly decreased (p = 0.0002) and with anti-miR-140 significantly increased (p = 0.05) IGFBP-5 expression at 24 hours, while pre-miR-27a did not affect either MMP-13 or IGFBP-5. Treatment with anti-miR-27a, but not with anti-miR-140, significantly increased the expression of both MMP-13 (p < 0.05) and IGFBP-5 (p < 0.01) after 72 hours of incubation. MMP-13 and IGFBP-5 protein production followed the same pattern as their expression profile. These data suggest that IGFBP-5 is a direct target of miR-140, whereas miR-27a down-regulates, likely indirectly, both MMP-13 and IGFBP-5.ConclusionThis study is the first to show the regulation of these miRNAs in human OA chondrocytes. Their effect on two genes involved in OA pathophysiology adds another level of complexity to gene regulation, which could open up novel avenues in OA therapeutic strategies.
Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1β secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1β at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of (encoding EVER1) or (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Objective. To compare gene expression in normal and osteoarthritic (OA) human chondrocytes using microarray technology. Of the novel genes identified, we selected follistatin, a bone morphogenetic protein (BMP) antagonist, and investigated its expression/regulation as well as that of 3 other antagonists, gremlin, chordin, and noggin, in normal and OA chondrocytes and synovial fibroblasts.Methods. Basal and induced gene expression were determined using real-time polymerase chain reaction. Gene regulation was monitored following treatment with inflammatory, antiinflammatory, growth, and developmental factors. Follistatin protein production was measured using a specific enzyme-linked immunosorbent assay, and localization of follistatin and gremlin in cartilage was determined by immunohistochemical analysis.Results. All BMP antagonists except noggin were expressed in chondrocytes and synovial fibroblasts. Follistatin and gremlin were significantly up-regulated in OA chondrocytes but not in OA synovial fibroblasts. Chordin was weakly expressed in normal and OA cells. Production of follistatin protein paralleled the gene expression pattern. Follistatin and gremlin were expressed preferentially by the chondrocytes at the superficial layers of cartilage. Tumor necrosis factor ␣ and interferon-␥ significantly stimulated follistatin expression but down-regulated expression of gremlin. Interleukin-1 (IL-1) had no effect on follistatin but reduced gremlin expression. Conversely, BMP-2 and BMP-4 significantly stimulated expression of gremlin but down-regulated that of follistatin. IL-13, dexamethasone, transforming growth factor 1, basic fibroblast growth factor, platelet-derived growth factor type BB, and endothelial cell growth factor down-regulated the expression of both antagonists.Conclusion. This study is the first to show the possible involvement of follistatin and gremlin in OA pathophysiology. The increased activin/BMP-binding activities of these antagonists could affect tissue remodeling. The data suggest that follistatin and gremlin might appear at different stages during the OA process, making them interesting targets for the treatment of this disease.Osteoarthritis (OA) is a progressive, debilitating disease of the joints characterized by the erosion of articular cartilage. Although much is known about the expression and regulation of genes associated with OA (e.g., metalloprotease, tissue inhibitor of metalloproteases, inflammatory cytokines, and extracellular matrix proteins such as collagens and proteoglycans), it is likely that the expression of many other genes is also affected during this pathologic process, and more is yet to be learned in order to gain a comprehensive understanding of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.