Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.iii Executive SummaryThe U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.This report describes in detail one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Ancillary areas-feed handling, product recovery, wastewater treatment, lignin combustion, and utilities-are also included in the design. Detailed material and energy balances and capital and operating costs were developed for the entire process, and they are documented in this report and accompanying process simulation files, which are available to the public.As a benchmark case study, this so-called technoeconomic model provides an absolute production cost for ethanol that can be used to assess its competitiveness and market potential. It can also be used to quantify the economic impact of individual conversion performance targets and prioritize these in terms of their potential to reduce cost. Furthermore, by using the benchmark as a comparison, DOE can make more informed decisions about research proposals claiming to lower ethanol production costs.Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and incorporates recent progress in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and an improved understanding of the ethanol plant's back end (wastewater and utilities). The major process updates in this design report are the following:• Feedstock composition is updated to a carbohydrate profile closer to the expected mean.• Pretreatment reactor configuration is revised with significant new detail.• Whole-slurry pH adjustment of the pretreated biomass with ammonia replaced the previous conditioning practice of overliming, eliminating a solid-liquid separation step.
Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.
The dry basis elemental composition of the feedstock, shown in Table 2, is identical to previous NREL and PNNL design reports [20,21]. The composition was originally assumed to come from pulpwood. Recent feedstock logistics work at the Idaho National Laboratory (INL) suggests that the use of blended material may be required to meet a cost target of $80/dry U.S. ton while still meeting these specifications [22]. For the purpose of this report, it is assumed that any blended material provided to meet this feedstock elemental composition will not adversely affect fast pyrolysis conversion efficiencies. Ongoing studies being conducted jointly by INL, NREL, and PNNL will provide experimental evidence of the impact of blended feedstocks on fast pyrolysis and gasification processes. Future TEA will be modified to reflect conversion impacts inferred from such studies.This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. not considered in this design in order to focus on the core technology of in situ and ex situ fast pyrolysis vapor upgrading. Aspen Plus ModelAn Aspen Plus Version 7.2 simulation was used as the basis for this report. Since the products in pyrolysis are numerous and varied, only selected model compounds were used to represent the product slate. Additional hydrocarbon species were added to represent hydroprocessing products. Many of the desired molecular species in the desired boiling ranges for light and heavy fractions did not exist in Aspen Plus databanks and physical property parameters needed to be estimated. The biomass feedstock, ash, char, and coke were modeled as non-conventional components. Appendix F provides information about compounds selected to represent the process. The Peng-Robinson with Boston-Mathias modifications (PR-BM) equation of state was used throughout most of the process simulation. The ASME 1967 steam table correlations (STEAM-TA) were used for the steam cycle calculations. Combustor/Regenerator Temperature, °C (°F) 650 (1,202) 720 (1,328) 650 (1,202) Pressure, psia (bar) 117 (8.1) 117 (8.1) 113 (7.8) Excess air (%) 20 20 20 Solids temperature before transfer to reactor, °C (°F) 650 (1,202) 720 (1,328) 341 (645) No. of cyclones per combustor 2 2 2 Area 200 Equipment Cost EstimationsCapital costs for the equipment in this area were estimated by Harris Group. A previously developed spreadsheet tool for gasifier costs was leveraged for this exercise. Cost estimates from this tool were compared with order of magnitude estimates from technology vendors and documented in Appendix I of Worley et al.
Biorefinery process development relies on techno-economic analysis (TEA) to identify primary cost drivers, prioritize research directions, and mitigate technical risk for scale-up through development of detailed process designs. Here, we conduct TEA of a model 2000 dry metric ton-per-day lignocellulosic biorefinery that employs a two-step pretreatment and enzymatic hydrolysis to produce biomass-derived sugars, followed by biological lipid production, lipid recovery, and catalytic hydrotreating to produce renewable diesel blendstock (RDB). On the basis of projected near-term technical feasibility of these steps, we predict that RDB could be produced at a minimum fuel selling price (MFSP) of USD $9.55/gasoline-gallon-equivalent (GGE), predicated on the need for improvements in the lipid productivity and yield beyond current benchmark performance. This cost is significant given the limitations in scale and high costs for aerobic cultivation of oleaginous microbes and subsequent lipid extraction/recovery. In light of this predicted cost, we developed an alternative pathway which demonstrates that RDB costs could be substantially reduced in the near term if upgradeable fractions of biomass, in this case hemicellulose-derived sugars, are diverted to coproducts of sufficient value and market size; here, we use succinic acid as an example coproduct. The coproduction model predicts an MFSP of USD $5.28/GGE when leaving conversion and yield parameters unchanged for the fuel production pathway, leading to a change in biorefinery RDB capacity from 24 to 15 MM GGE/year and 0.13 MM tons of succinic acid per year. Additional analysis demonstrates that beyond the near-term projections assumed in the models here, further reductions in the MFSP toward $2–3/GGE (which would be competitive with fossil-based hydrocarbon fuels) are possible with additional transformational improvements in the fuel and coproduct trains, especially in terms of carbon efficiency to both fuels and coproducts, recovery and purification of fuels and coproducts, and coproduct selection and price. Overall, this analysis documents potential economics for both a hydrocarbon fuel and bioproduct process pathway and highlights prioritized research directions beyond the current benchmark to enable hydrocarbon fuel production via an oleaginous microbial platform with simultaneous coproduct manufacturing from lignocellulosic biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.