IntroductionThe COVID-19 pandemic is this century’s largest public health emergency and its successful management relies on the effective dissemination of factual information. As a social media platform with billions of daily views, YouTube has tremendous potential to both support and hinder public health efforts. However, the usefulness and accuracy of most viewed YouTube videos on COVID-19 have not been investigated.MethodsA YouTube search was performed on 21 March 2020 using keywords ‘coronavirus’ and ‘COVID-19’, and the top 75 viewed videos from each search were analysed. Videos that were duplicates, non-English, non-audio and non-visual, exceeding 1 hour in duration, live and unrelated to COVID-19 were excluded. Two reviewers coded the source, content and characteristics of included videos. The primary outcome was usability and reliability of videos, analysed using the novel COVID-19 Specific Score (CSS), modified DISCERN (mDISCERN) and modified JAMA (mJAMA) scores.ResultsOf 150 videos screened, 69 (46%) were included, totalling 257 804 146 views. Nineteen (27.5%) videos contained non-factual information, totalling 62 042 609 views. Government and professional videos contained only factual information and had higher CSS than consumer videos (mean difference (MD) 2.21, 95% CI 0.10 to 4.32, p=0.037); mDISCERN scores than consumer videos (MD 2.46, 95% CI 0.50 to 4.42, p=0.008), internet news videos (MD 2.20, 95% CI 0.19 to 4.21, p=0.027) and entertainment news videos (MD 2.57, 95% CI 0.66 to 4.49, p=0.004); and mJAMA scores than entertainment news videos (MD 1.21, 95% CI 0.07 to 2.36, p=0.033) and consumer videos (MD 1.27, 95% CI 0.10 to 2.44, p=0.028). However, they only accounted for 11% of videos and 10% of views.ConclusionOver one-quarter of the most viewed YouTube videos on COVID-19 contained misleading information, reaching millions of viewers worldwide. As the current COVID-19 pandemic worsens, public health agencies must better use YouTube to deliver timely and accurate information and to minimise the spread of misinformation. This may play a significant role in successfully managing the COVID-19 pandemic.
The Semantic Web Initiative envisions a Web wherein information is offered free of presentation, allowing more effective exchange and mixing across web sites and across web pages. But without substantial Semantic Web content, few tools will be written to consume it; without many such tools, there is little appeal to publish Semantic Web content. To break this chicken-and-egg problem, thus enabling more flexible information access, we have created a web browser extension called Piggy Bank that lets users make use of Semantic Web content within Web content as users browse the Web. Wherever Semantic Web content is not available, Piggy Bank can invoke screenscrapers to restructure information within web pages into Semantic Web format. Through the use of Semantic Web technologies, Piggy Bank provides direct, immediate benefits to users in their use of the existing Web. Thus, the existence of even just a few Semantic Web-enabled sites or a few scrapers already benefits users. Piggy Bank thereby offers an easy, incremental upgrade path to users without requiring a wholesale adoption of the Semantic Web's vision. To further improve this Semantic Web experience, we have created Semantic Bank, a web server application that lets Piggy Bank users share the Semantic Web information they have collected, enabling collaborative efforts to build sophisticated Semantic Web information repositories through simple, everyday's use of Piggy Bank.
Abstract. The Semantic Web promises to open innumerable opportunities for automation and information retrieval by standardizing the protocols for metadata exchange. However, just as the success of the World Wide Web can be attributed to the ease of use and ubiquity of Web browsers, we believe that the unfolding of the Semantic Web vision depends on users getting powerful but easy-to-use tools for managing their information. But unlike HTML, which can be easily edited in any text editor, RDF is more complicated to author and does not have an obvious presentation mechanism. Previous work has concentrated on the ideas of generic RDF graph visualization and RDF Schemabased form generation. In this paper, we present a comprehensive platform for constructing end user applications that create, manipulate, and visualize arbitrary RDF-encoded information, adding another layer to the abstraction cake. We discuss a programming environment specifically designed for manipulating RDF and introduce user interface concepts on top that allow the developer to quickly assemble applications that are based on RDF data models. Also, because user interface specifications and program logic are themselves describable in RDF, applications built upon our framework enjoy properties such as network updatability, extensibility, and end user customizability -all desirable characteristics in the spirit of the Semantic Web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.