Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century.
Numerous specimens of the 3 sibling species of the Anisakis simplex species complex (A. pegreffii, A. simplex (senso stricto)), and A. simplex sp. C) recovered from cetacean species stranded within the known geographical ranges of these nematodes were studied morphologically and genetically. The genetic characterization was performed on diagnostic allozymes and sequences analysis of nuclear (internal transcribed spacer [ITS] of ribosomal [r]DNA) and mitochondrial (mitochondrial [mt]DNA cox2 and rrnS) genes. These markers showed (1) the occurrence of sympatry of the 2 sibling species A. pegreffii and A. simplex sp. C in the same individual host, the pilot whale, Globicephala melas Traill, from New Zealand waters; (2) the identification of specimens of A. pegreffii in the striped dolphin, Stenella coeruleoalba (Meyen), from the Mediterranean Sea; and (3) the presence of A. simplex (s.s.) in the pilot whale and the minke whale, Balaenoptera acutorostrata Lacépède, from the northeastern Atlantic waters. No F1 hybrids were detected among the 3 species using the nuclear markers. The phylogenetic inference, obtained by maximum parsimony (MP) analysis of separate nuclear (ITS rDNA region), combined mitochondrial (mtDNA cox2 and rrnS) sequences datasets, and by concatenated analysis obtained at both MP and Bayesian inference (BI) of the sequences datasets at the 3 studied genes, resulted in a similar topology. They were congruent in depicting the existence of the 3 species as distinct phylogenetic lineages, and the tree topologies support the finding that A. simplex (s.s.), A. pegreffii, and A. berlandi n. sp. (= A. simplex sp. C) represent a monophyletic group. The morphological and morphometric analyses revealed the presence of morphological features that differed among the 3 biological species. Morphological analysis using principal component analysis, and Procrustes analysis, combining morphological and genetic datasets, showed the specimens clustering into 3 well-defined groups. Nomenclatural designation and formal description are given for A. simplex species C: the name Anisakis berlandi n. sp. is proposed. Key morphological diagnostic traits are as follows between A. berlandi n. sp. and A. simplex (s.s.): ventriculus length, tail shape, tail length/total body length ratio, and left spicule length/total body length ratio; between A. berlandi n. sp. and A. pegreffii: ventriculus length and plectane 1 width/plectane 3 width ratio; and between A. simplex (s.s.) and A. pegreffii: ventriculus length, left and right spicule length/total body length ratios, and tail length/total body length ratio. Ecological data pertaining to the geographical ranges and host distribution of the 3 species are updated.
The history of the classification of the Hemiuroidea and the features which have been used as criteria for distinguishing the higher taxa, such as adult morphology, life-cycle patterns and cercarial anatomy, are discussed. It is suggested that the best basic criterion currently available is the functional morphology of the adult. Explanations of the terminology with comments on the systematic significance and possible function of the features used in the study of hemiuroid taxonomy are included. A classification of the Hemiuroidea is presented with keys and definitions of the taxa to the generic level. The classification and definitions are based, where possible, on original observations of sectioned material. The Hemiuroidea is divided into fourteen families. The Accacoeliidae contains the Accacoeliinae and Paraccacladiinae, the latter subfamily consisting of only one genus. The Azygiidae consists of two subfamilies, the Azygiinae and Leuceruthrinae. The Bathycotylidae, Isoparorchiidae and Ptychogonimidae contain single genera, while the Hirudinellidae contains three monotypic genera. The Bunocotylidae is Bull. Br. Mus. not. Hist. (Zool.
This is a catalogue and discussion of the known dactylogyridean monogenean genera of siluriform fishes of the Old World. Of a total of 38 nominal genera, only 19 are considered valid. Seventeen of these 19 genera are currently in the Ancyrocephalidae (containing the Ancyrocephalinae and Ancylodiscoidinae), whilst the other two (Neocalceostoma and Neocalceostomoides) are in the Neocalceostomatidae. The 17 genera are Anchylodiscus, Ancylodiscoides, Bagrobdella, Bifurcohaptor, Bychowskyella, Chauhanellus, Cornudiscoides, Hamatopeduncularia, Mizelleus, Paraquadriacanthus, Pseudancylodiscoides, Protoancylodiscoides, Quadriacanthus, Schilbetrema, Schilbetrematoides, Synodontella and Thaparocleidus. Clariotrema Long, 1981 and Neobychowskyella Ma, Wang & Li, 1983 are considered synonyms of Bychowskyella Akhmerov, 1952, Anacornuatus Dubey, Gupta & Agarwal, 1992 is considered a synonym of Quadriacanthus Paperna, 1961, Mizellebychowskia Gupta & Sachdeva, 1990 is considered a synonym of Neocalceostoma Tripathi, 1959 and Hargitrema Tripathi, 1959 is treated as a synonym of Hamatopeduncularia Yamaguti, 1953. It is proposed that the Ancylodiscoidinae be raised to family status within the order Dactylogyridea to accommodate these 17 'ancyrocephalid' genera from siluriforms, together with Malayanodiscoides and Notopterodiscoides from notopterids. A key and the diagnostic characteristics of the 19 recognised dactylogyridean genera from catfishes plus two from notopterids, together with a list of species and synonyms, are included. New combinations made in this work are Thaparocleidus avicularia (Chen, 1987) n. comb., T. calyciflorus (Chen, 1987) n. comb., T. choanovagina (Luo & Lang, 1981) n. comb., T. dissimilis (Chen, 1988) n. comb., T. leiocassis (Reichenbach-Klinke, 1959) n. comb., T. meticulosa (Chen, 1987) n. comb., T. parasoti (Zhao & Ma, 1999) n. comb., T. persculpus (Chen, 1987) n. comb., T. valga (Chen, 1987) n. comb. and T. wulingensis (Yao & Wang, 1997) n. comb. [all from Silurodiscoides] and Bychowskyella glyptothoraci (Ma, Wang & Li, 1983) n. comb. [from Neobychowskyella].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.