Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft or lander, which could be used for additional science instruments, the ability to power electric propulsion systems, or support human exploration on another planet. Power rich nuclear missions have been excluded from NASA mission proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure and determine if the reactor design is suitable for flight development. The threeyear Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight-prototypic nuclear reactor by the end of 2017. Initially, the power system will undergo several non-nuclear tests using an electrical heat source and a depleted uranium core to verify the complete nonnuclear system design prior to any nuclear testing. After successful completion of the depleted uranium test, the system will be shipped to the Nevada National Security Site where it will be fueled with the highly enriched uranium core and retested using the nuclear heat source. At completion of the project, NASA will have a significant sum of experimental data with a flight-prototypic fission power system, greatly reducing the technical and programmatic risks associated with further flight development. To compliment the hardware rich development progress, a review of several higher power mission studies are included to emphasize the impact of having a flight qualified fission reactor. The studies cover several science missions that offer nuclear electric propulsion with the reactor supplying power to the spacecraft's propulsion system and the science instruments, enabling a new class of outer planet missions. A solar versus nuclear trade for Mars surface power is also reviewed to compare the advantages of each system in support of ascent vehicle propellant production and human expeditions. These mission studies offer insight into some of the benefits that fission power has to offer but still lacks a wider audience of influence. For example, mission directorates won't include a fission power system in their solicitations until it's flight qualified, and scientists won't propose new missions that require more power than what's currently proven and available. An attempt to break this chicken and egg effect has been ongoing with the Kilopower project with the goal of advancing the technology to a level that encourages a flight development program and allows scientists to propose new ideas for higher power missions.
The Kilopower Project was initiated by NASA's Space Technology Mission Directorate/ Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Kilopower Project centerpiece is the Kilowatt Reactor Using Stirling TechnologY (KRUSTY) test, which consists of the development and testing of a ground technology demonstrator of a 1-kW(electric)-class fission power system (FPS). The technologies to be developed and validated by KRUSTY are extensible to space FPSs from 1 to 10 kW(electric), which can enable modular surface FPSs for human exploration as well as higherpower future potential deep space science missions. The KRUSTY demonstration is cofunded by NASA and the U.S. Department of Energy National Nuclear Security Administration. The KRUSTY demonstration in the National Critical Experiment Research Center's Device Assembly Facility was completed in the first quarter of 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.