The use of autograft skin is essential in the treatment of full thickness burns and large cutaneous defects. Both autograft thickness and condition of the wound bed modulate aesthetic and functional outcomes. Thicker autografts contract less and maintain greater functionality as the scar matures. The presence of hypodermis can also positively affect the eventual appearance and functionality of the wound site by modulating contraction and alleviating inflammation and cellular stress responses. In this study, we characterize wound-site physical and cellular characteristics following split-thickness skin grafting onto hypodermis vs. onto fascia. Compared to autografts grafted onto fascia, identical thickness autografts grafted onto fat demonstrated reduced contraction, enhanced mobility and vascularity, and reduced topographical variability. Grafts onto fat also showed reduced levels of myofibroblasts and leukocytic infiltration. The status of the wound bed prior to engraftment is an important contributor of skin quality outcome. The presence of hypodermis is associated with improved functional and aesthetic qualities of split thickness skin grafts, which are correlated with reduced presence of myofibroblasts and leukocytic infiltration.
Background:Texture, color, and durability are important characteristics to consider for skin replacement in conspicuous and/or mobile regions of the body such as the face, neck, and hands. Although autograft thickness is a known determinant of skin quality, few studies have correlated the subjective and objective characters of skin graft healing with their associated morphologic and cellular profiles. Defining these relationships may help guide development and evaluation of future skin replacement strategies.Methods:Six-centimeter-diameter full-thickness wounds were created on the back of female Yorkshire pigs and covered by autografts of variable thicknesses. Skin quality was assessed on day 120 using an observer scar assessment score and objective determinations for scar contraction, erythema, pigmentation, and surface irregularities. Histological, histochemical, and immunohistochemical assessments were performed.Results:Thick grafts demonstrated lower observer scar assessment score (better quality) and decreased erythema, pigmentation, and surface irregularities. Histologically, thin grafts resulted in scar-like collagen proliferation while thick grafts preserves the dermal architecture. Increased vascularity and prolonged and increased cellular infiltration were observed among thin grafts. In addition, thin grafts contained predominately dense collagen fibers, whereas thick grafts had loosely arranged collagen. α-Smooth muscle actin staining for myofibroblasts was observed earlier and persisted longer among thinner grafts.Conclusions:Graft thickness is an important determinant of skin quality. High-quality skin replacements are associated with preserved collagen architecture, decreased neovascularization, and decreased inflammatory cellular infiltration. This model, using autologous skin as a metric of quality, may give a more informative analysis of emerging skin replacement strategies.
At least 26% of recent battlefield injuries are to the craniomaxillofacial (CMF) region. Recombinant human bone morphogenetic protein 2 (rhBMP‐2) is used to treat CMF open fractures, but several complications have been associated with its use. This study tested the efficacy and safety of a lower (30% recommended) dose of rhBMP‐2 to treat mandibular fractures. rhBMP‐2 delivered via a polyurethane (PUR) and hydroxyapatite/β‐tricalcium phosphate (Mastergraft®) scaffold was evaluated in a 2 cm segmental mandibular defect in minipigs. Bone regeneration was analyzed at 4, 8, and 12 weeks postsurgery using clinical computed tomography (CT) and rhBMP‐2, and inflammatory marker concentrations were analyzed in serum and surgery‐site drain effluent. CT scans revealed that pigs treated with PUR‐Mastergraft® + rhBMP‐2 had complete bone bridging, while the negative control group showed incomplete bone‐bridging (n = 6). Volumetric analysis of regenerated bone showed that the PUR‐Mastergraft® + rhBMP‐2 treatment generated significantly more bone than control by 4 weeks, a trend that continued through 12 weeks. Variations in inflammatory analytes were detected in drain effluent samples and saliva but not in serum, suggesting a localized healing response. Importantly, the rhBMP‐2 group did not exhibit an excessive increase in inflammatory analytes compared to control. Treatment with low‐dose rhBMP‐2 increases bone regeneration capacity in pigs with mandibular continuity defects and restores bone quality. Negative complications from rhBMP‐2, such as excessive inflammatory analyte levels, were not observed. Together, these results suggest that treatment with low‐dose rhBMP‐2 is efficacious and may improve safety when treating CMF open fractures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1491–1503, 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.