In this work the groundwork is laid for characterizing the mobility of hydrogen-hydrogen pairs (proton-proton radial vectors) in proteins in the solid state that contain only residual water. In this novel approach, we introduce new ways of analyzing and interpreting data: 1) by representing hydrogen mobility (HM) and melting diagram (MD) data recorded by wide-line H NMR spectroscopic analysis as a function of fundamental temperature (thermal excitation energy); 2) by suggesting a novel mode of interpretation of these parameters that sheds light on details of protein-water interactions, such as the exact amount of water molecules and the distribution of barrier potentials pertaining to their rotational and surface translational mobility; 3) by relying on directly determined physical observables. We illustrate the power of this approach by studying the behavior of two proteins, the structured enzyme lysozyme and the intrinsically disordered ERD14.
We report electron spin resonance (ESR) measurements on stage‐I potassium intercalated graphite (KC8). Angular dependent measurements show that the spin–lattice relaxation time is longer when the magnetic field is perpendicular to the graphene layer as compared to when the magnetic field is in the plane. This anisotropy is analyzed in the framework of the Elliott–Yafet theory of spin‐relaxation in metals. The analysis considers an anisotropic spin–orbit Hamiltonian and the first order perturbative treatment of Elliott is reproduced for this model Hamiltonian. The result provides an experimental input for the first‐principles theories of spin–orbit interaction in layered carbon and thus to a better understanding of spin‐relaxation phenomena in graphene and in other layered materials as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.