Contamination of soil and water with antibiotic-resistant bacteria may create reservoirs of antibiotic resistance genes that have the potential to negatively impact future public health through horizontal gene transfer. The plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrS, qepA, and aac(6')-Ib-cr were detected by PCR amplification of metagenomic DNA from surface sediments of the Tijuana River Estuary, a sewage-impacted coastal wetland along the U.S.-Mexico border; sediments of Famosa Slough, a nearby urban wetland that is largely unaffected by sewage, contained only qnrB, qnrS, and qepA. The number of PCR-positive sites and replicates increased in both wetlands after rainfall. Real-time quantitative PCR revealed a significant increase (p < 0.0005) in qnrA abundance (copies per gram sediment or per 16S rDNA copy) in Tijuana River Estuary sediments immediately following rainfall, but no significant change was measured at Famosa Slough (p > 0.1). Nucleotide sequences of cloned qnrA amplicons were all affiliated with qnrA genes found on plasmids of clinical isolates with one exception that was most similar to the chromosomal qnrA gene found in Shewanella algae. Our results suggest that urban wetlands may become reservoirs of antibiotic resistance genes, particularly where wastewater is improperly managed.
Background: Insulin signaling regulates luteinizing hormone (LH) production in pituitary gonadotrope cells through unknown mechanisms. Results: FOXO1 phosphorylation and cellular localization are regulated by insulin signaling, and FOXO1 represses LH -subunit (Lhb) transcription. Conclusion: Our study highlights a novel mechanism for regulation of Lhb gene expression. Significance: FOXO1 may act as a metabolic sensor in controlling LH levels and fertility.
Synthesis of the gonadotropin β-subunits is tightly controlled by a complex network of hormonal signaling pathways that may be modulated by metabolic cues. Recently, we reported that insulin regulates FOXO1 phosphorylation and cellular localization in pituitary gonadotropes and that FOXO1 overexpression inhibits Lhb transcription. In the current study, we investigated whether FOXO1 modulates Fshb synthesis. Here, we demonstrate that FOXO1 represses basal and GnRH-induced Fshb transcription in LβT2 cells. In addition, we show that PI3K inhibition, which increases FOXO1 nuclear localization, results in decreased Fshb mRNA levels in murine primary pituitary cells. FOXO1 also decreases transcription from the human FSHB promoter, suggesting that FOXO1 regulation of FSHB transcription may be conserved between rodents and humans. Although the FOXO1 DNA-binding domain is necessary for suppression of Fshb, we do not observe direct binding of FOXO1 to the Fshb promoter, suggesting that FOXO1 exerts its effect through protein-protein interactions with transcription factors required for Fshb synthesis. FOXO1 suppression of basal Fshb transcription may involve PITX1 because PITX1 interacts with FOXO1, FOXO1 repression maps to the proximal Fshb promoter containing a PITX1-binding site, PITX1 induction of Fshb or a PITX1 binding element in CV-1 cells is decreased by FOXO1, and FOXO1 suppresses Pitx1 mRNA and protein levels. GnRH induction of an Fshb promoter containing a deletion at -50/-41 or -30/-21 is not repressed by FOXO1, suggesting that these two regions may be involved in FOXO1 suppression of GnRH-induced Fshb synthesis. In summary, our data demonstrate that FOXO1 can negatively regulate Fshb transcription and suggest that FOXO1 may relay metabolic hormonal signals to modulate gonadotropin production.
In the present study, we investigate whether the FOXO1 transcription factor modulates activin signaling in pituitary gonadotropes. Our studies show that overexpression of constitutively active FOXO1 decreases activin induction of murine Fshb gene expression in immortalized LβT2 cells. We demonstrate that FOXO1 suppression of activin induction maps to the −304/−95 region of the Fshb promoter containing multiple activin response elements and that the suppression requires the FOXO1 DNA-binding domain (DBD). FOXO1 binds weakly to the −125/−91 region of the Fshb promoter in a gel-shift assay. Since this region of the promoter contains a composite SMAD/FOXL2 binding element necessary for activin induction of Fshb transcription, it is possible that FOXO1 DNA binding interferes with SMAD and/or FOXL2 function. In addition, our studies demonstrate that FOXO1 directly interacts with SMAD3/4 but not SMAD2 in a FOXO1 DBD-dependent manner. Moreover, we show that SMAD3/4 induction of Fshb-luc and activin induction of a multimerized SMAD-binding element-luc are suppressed by FOXO1 in a DBD-dependent manner. These results suggest that FOXO1 binding to the proximal Fshb promoter as well as FOXO1 interaction with SMAD3/4 proteins may result in decreased activin induction of Fshb in gonadotropes.
Luteinizing hormone (LH) is required for mammalian fertility and is produced exclusively by gonadotrope cells within the anterior pituitary. Insulin stimulation of gonadotropes induces LH production, although the mechanisms are unknown. One candidate that may transduce insulin signaling into functional changes in Lhb synthesis is the Forkhead box‐O (FOXO) family of transcription factors. In response to insulin, FOXOs are negatively regulated by Akt phosphorylation, which results in their export from the nucleus to the cytoplasm, thereby limiting their nuclear activity. We have identified FOXO1 expression in murine pituitary gonadotropes and in LbT2 cells, an immortalized gonadotrope cell line. Here, we investigate insulin regulation FOXO1 and the ability of FOXO1 to alter Lhb synthesis. Western analyses identified phosphorylation changes in FOXO1 in response to insulin, which correlated with FOXO1 cytoplasmic localization using immunofluorescence imaging. By luciferase assay, we determined that FOXO1 overexpression in LbT2 cells inhibits basal and gonadotropin‐releasing hormone induced Lhb transcription. Our results indicate that FOXO1 is regulated by insulin in gonadotropes and FOXO1 inhibits Lhb synthesis. In summary, our findings identify a novel mechanism for Lhb gene regulation.Support: T31 HD720329, R01 HD067448, K01 DK080467, P30 DK063491, and U54 HD012303.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.