The ability of intestinal mucosa to absorb dietary ferric iron is attributed to the presence of a brush-border membrane reductase activity that displays adaptive responses to iron status. We have isolated a complementary DNA, Dcytb (for duodenal cytochrome b), which encoded a putative plasma membrane di-heme protein in mouse duodenal mucosa. Dcytb shared between 45 and 50% similarity to the cytochrome b561 family of plasma membrane reductases, was highly expressed in the brush-border membrane of duodenal enterocytes, and induced ferric reductase activity when expressed in Xenopus oocytes and cultured cells. Duodenal expression levels of Dcytb messenger RNA and protein were regulated by changes in physiological modulators of iron absorption. Thus, Dcytb provides an important element in the iron absorption pathway.
A simple method is described to locate 'antigenic' peptides from the a-carbon co-ordinates of a protein, based on protrusion from the protein's globular surface. A good correlation is found between those parts of a protein which protrude and the experimentally determined antigenic peptides in myoglobin, lysozyme and myohemerythrin. A comparison is made between the use of protrusion index, mobility, solvent accessibility and hydrophilicity for predicting the most likely antigenic peptides.
The lipid matrix present in the uppermost layer of the skin, the stratum corneum, plays a crucial role in the skin barrier function. The lipids are organized into two lamellar phases. To gain more insight into the molecular organization of one of these lamellar phases, we performed neutron diffraction studies. In the diffraction pattern, five diffraction orders were observed attributed to a lamellar phase with a repeat distance of 5.4 nm. Using contrast variation, the scattering length density profile could be calculated showing a typical bilayer arrangement. To obtain information on the arrangement of ceramides in the unit cell, a mixture that included a partly deuterated ceramide was also examined. The scattering length density profile of the 5.4-nm phase containing this deuterated ceramide demonstrated a symmetric arrangement of the ceramides with interdigitating acyl chains in the center of the unit cell.
The extracellular lipid matrix in the skin's outermost layer, the stratum corneum, is crucial for the skin barrier. The matrix is composed of ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) and involves two lamellar phases: the short periodicity phase (SPP) and the long periodicity phase (LPP). To understand the skin barrier thoroughly, information about the molecular arrangement in the unit cell of these lamellar phases is paramount. Previously we examined the molecular arrangement in the unit cell of the SPP. Furthermore X-ray and neutron diffraction revealed a trilayer arrangement of lipids within the unit cell of the LPP [D. Groen et al., Biophysical Journal, 97, 2242-2249, 2009]. In the present study, we used neutron diffraction to obtain more details about the location of lipid (sub)classes in the unit cell of the LPP. The diffraction pattern revealed at least 8 diffraction orders of the LPP with a repeating unit of 129.6±0.5Å. To determine the location of lipid sub(classes) in the unit cell, samples were examined with either only protiated lipids or selectively deuterated lipids. The diffraction data obtained by means of D2O/H2O contrast variation together with a gradual replacement of one particular CER, the acyl CER, by its partly deuterated counterpart, were used to construct the scattering length density profiles. The acyl chain of the acyl CER subclass is located at a position of ~21.4±0.2Å from the unit cell centre of the LPP. The position and orientation of CHOL in the LPP unit cell were determined using tail and head-group deuterated forms of the sterol. CHOL is located with its head-group positioned ~26±0.2Å from the unit cell centre. This allows the formation of a hydrogen bond with the ester group of the acyl CER located in close proximity. Based on the positions of the deuterated moieties of the acyl CER, CHOL and the previously determined location of two other lipid subclasses [E.H. Mojumdar et al., Biophysical Journal, 108, 2670-2679, 2015], a molecular model is proposed for the unit cell of the LPP. In this model CHOL is located in the two outer layers of the LPP, while CER EOS is linking the two outer layers with the central lipid layers. Finally the two other lipid subclasses are predominantly located in the central layer of the LPP.
The lipid matrix of the skin's stratum corneum plays a key role in the barrier function, which protects the body from desiccation. The lipids that make up this matrix consist of ceramides, cholesterol, and free fatty acids, and can form two coexisting crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). To fully understand the skin barrier function, information on the molecular arrangement of the lipids in the unit cell of these lamellar phases is very desirable. To determine this arrangement in previous studies, we examined the molecular arrangement of the SPP. In this study, neutron diffraction studies were performed to obtain information on the molecular arrangement of the LPP. The diffraction pattern reveals nine diffraction orders attributed to the LPP with a repeating unit of 129.4 ± 0.5 Å. Using D2O/H2O contrast variation, the scattering length density profiles were calculated for protiated samples and samples that included either the perdeuterated acyl chain of the most abundant ceramide or the most abundant perdeuterated fatty acid. Both perdeuterated chains are predominantly located in the central part of the unit cell with substantial interdigitation of the acyl chains in the unit cell center. However, a fraction of the perdeuterated chains is also located near the border of the unit cell with their acyl chains directing toward the center. This arrangement of lipids in the LPP unit cell corresponds with the location of their lipid headgroups at the border and also inside of the unit cell at a well-defined position (±21 Å from the unit cell center), indicative of a three-layer lipid arrangement within the 129.4 ± 0.5 Å repeating unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.