he advent of computed tomography (ct) has revolutionized diagnostic radiology. Since the inception of CT in the 1970s, its use has increased rapidly. It is estimated that more than 62 million CT scans per year are currently obtained in the United States, including at least 4 million for children. 1 By its nature, CT involves larger radiation doses than the more common, conventional x-ray imaging procedures (Table 1). We briefly review the nature of CT scanning and its main clinical applications, both in symptomatic patients and, in a more recent development, in the screening of asymptomatic patients. We focus on the increasing number of CT scans being obtained, the associated radiation doses, and the consequent cancer risks in adults and particularly in children. Although the risks for any one person are not large, the increasing exposure to radiation in the population may be a public health issue in the future. C T a nd I t s Use The basic principles of axial and helical (also known as spiral) CT scanning are illustrated in Figure 1. CT has transformed much of medical imaging by providing three-dimensional views of the organ or body region of interest. The use of CT has increased rapidly, both in the United States and elsewhere, notably in Japan; according to a survey conducted in 1996, 2 the number of CT scanners per 1 million population was 26 in the United States and 64 in Japan. It is estimated that more than 62 million CT scans are currently obtained each year in the United States, as compared with about 3 million in 1980 (Fig. 2). 3 This sharp increase has been driven largely by advances in CT technology that make it extremely user-friendly, for both the patient and the physician. C om mon T y pe s of C T S c a ns CT use can be categorized according to the population of patients (adult or pediatric) and the purpose of imaging (diagnosis in symptomatic patients or screening of asymptomatic patients). CT-based diagnosis in adults is the largest of these categories. (About half of diagnostic CT examinations in adults are scans of the body, and about one third are scans of the head, with about 75% obtained in a hospital setting and 25% in a single-specialty practice setting. 1) The largest increases in CT use, however, have been in the categories of pediatric diagnosis 4,5 and adult screening, 6-13 and these trends can be expected to continue for the next few years. The growth of CT use in children has been driven primarily by the decrease in the time needed to perform a scan-now less than 1 second-largely eliminating the need for anesthesia to prevent the child from moving during image ac
The best available risk estimates suggest that pediatric CT will result in significantly increased lifetime radiation risk over adult CT, both because of the increased dose per milliampere-second, and the increased lifetime risk per unit dose. Lower milliampere-second settings can be used for children without significant loss of information. Although the risk-benefit balance is still strongly tilted toward benefit, because the frequency of pediatric CT examinations is rapidly increasing, estimates that quantitative lifetime radiation risks for children undergoing CT are not negligible may stimulate more active reduction of CT exposure settings in pediatric patients.
High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x-or ␥-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is Ϸ10 -50 mSv for an acute exposure and Ϸ50 -100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.
A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues. We previously demonstrated that 222-nm far-UVC light efficiently kills airborne influenza virus and we extend those studies to explore far-UVC efficacy against airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. Low doses of 1.7 and 1.2 mJ/cm 2 inactivated 99.9% of aerosolized coronavirus 229E and OC43, respectively. As all human coronaviruses have similar genomic sizes, far-UVC light would be expected to show similar inactivation efficiency against other human coronaviruses including SARS-CoV-2. Based on the beta-HCoV-OC43 results, continuous far-UVC exposure in occupied public locations at the current regulatory exposure limit (~3 mJ/cm 2 /hour) would result in ~90% viral inactivation in ~8 minutes, 95% in ~11 minutes, 99% in ~16 minutes and 99.9% inactivation in ~25 minutes. Thus while staying within current regulatory dose limits, low-dose-rate far-UVC exposure can potentially safely provide a major reduction in the ambient level of airborne coronaviruses in occupied public locations. Coronavirus disease 2019 (COVID-19) was first reported in December 2019 and then characterized as a pandemic by the World Health Organization on March 11, 2020. Despite extensive efforts to contain the spread of the disease, it has spread worldwide with over 5.3 million confirmed cases and over 340,000 confirmed deaths as of May 25, 2020 1. Transmission of SARS-CoV-2, the beta coronavirus causing COVID-19, is believed to be both through direct contact and airborne routes, and studies of SARS-CoV-2 stability have shown viability in aerosols for at least 3 hours 2. Given the rapid spread of the disease, including through asymptomatic carriers 3 , it is of clear importance to explore practical mitigation technologies that can inactivate the airborne virus in public locations and thus limit airborne transmission. Ultraviolet (UV) light exposure is a direct antimicrobial approach 4 and its effectiveness against different strains of airborne viruses has long been established 5. The most commonly employed type of UV light for germicidal applications is a low pressure mercury-vapor arc lamp, emitting around 254 nm; more recently xenon lamp technology has been used, which emits broad UV spectrum 6. However, while these lamps can be used to disinfect unoccupied spaces, direct exposure to conventional germicidal UV lamps in occupied public spaces is not possible since direct exposure to these germicidal lamp wavelengths can be a health hazard, both to the skin and eye 7-10. By contrast far-UVC light (207 to 222 nm) has been shown to be as efficient as conventional germicidal UV light in killing microorganisms 11 , but studies to date 12-15 suggest that th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.