Degeneration of the intervertebral disc has been implicated in chronic low back pain. Type II collagen and proteoglycan (predominantly aggrecan) content is crucial to proper disc function, particularly in the nucleus pulposus. In degeneration, synthesis of matrix molecules changes, leading to an increase in the synthesis of collagens type I and III and a decreased production of aggrecan. Linked to this is an increased expression of matrix-degrading molecules including MMPs (matrix metalloproteinases) and the aggrecanases, ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) 1, 4, 5, 9 and 15, all of which are produced by native disc cells. Importantly, we have found that there is a net increase in these molecules, over their natural inhibitors [TIMP-1 (tissue inhibitor of metalloproteinases-1), 2 and 3], suggesting a deregulation of the normal homoeostatic mechanism. Growth factors and cytokines [particularly TNFalpha (tumour necrosis factor alpha) and IL-1 (interleukin 1)] have been implicated in the regulation of this catabolic process. Our work has shown that in degenerate discs there is an increase in IL-1, but no corresponding increase in the inhibitor IL-1 receptor antagonist. Furthermore, treatment of human disc cells with IL-1 leads to a decrease in matrix gene expression and increased MMP and ADAMTS expression. Inhibition of IL-1 would therefore be an important therapeutic target for preventing/reversing disc degeneration.
Cathepsin K (EC 3.4.22.38) is a recently described enzyme that has been shown to cleave type I collagen in its triple helix. The aim of this study was to determine if it also cleaves type II collagen in the triple helix and to identify the helical cleavage site(s) in types I and II collagens. Soluble human and bovine type II collagen, and rat type I collagen, were incubated with cathepsin K before the reaction was stopped with trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64). Analysis by SDS/PAGE of the collagen digests showed that optimal activity of cathepsin K against native type II collagen was between pH 5.0 and 5.5 and against denatured collagen between pH 4.0 and 7.0. The enzyme cleaved telopeptides as well as the alpha1(II) chains, generating multiple fragments in the range 90-120 kDa. The collagenolytic activity was not due to a contaminating metalloenzyme or serine proteinase as it was not inhibited by 1,10-phenanthroline, EDTA or 3,4-dichloroisocoumarin. Western blotting with anti-peptide antibodies to different regions of the alpha1(II) chain suggested that cathepsin K cleaved native alpha1(II) chains in the N-terminal region of the helical domain rather than at the well-defined collagenase cleavage site. This was confirmed by N-terminal sequencing of one of the fragments, revealing cleavage at a Gly-Lys bond, 58 residues from the N-terminus of the helical domain. By using a similar approach, cathepsin K was found to cleave native type I collagen close to the N-terminus of its triple helix. These results indicate that cathepsin K could have a role in the turnover of type II collagen, as well as type I collagen.
Cathepsin B is a lysosomal cysteine protease of the papain family. It functions in intracellular protein catabolism and in certain situations may also be involved in other physiological processes, such as processing of antigens in the immune response, hormone activation and bone turnover. There is also evidence that cathepsin B is implicated in the pathology of chronic inflammatory diseases of airways and joints, and in cancer and pancreatitis. In this short review we outline the major structural features of the enzyme, and describe how these relate to its synthesis, trafficking, processing and function.
Objective. Intervertebral disc degeneration is linked to loss of extracellular matrix (ECM), particularly the early loss of aggrecan. A group of metalloproteinases called aggrecanases are important mediators of aggrecan turnover. The present study was undertaken to investigate the expression of the recognized aggrecanases and their inhibitor, tissue inhibitor of metalloproteinases 3 (TIMP-3), in human intervertebral disc tissue.Methods. Twenty-four nondegenerated and 30 degenerated disc samples were analyzed for absolute messenger RNA (mRNA) copy number of ADAMTS 1, 4, 5, 8, 9, and 15 and TIMP-3 by real-time reverse transcription-polymerase chain reaction. Thirty-six formalin-fixed embedded intervertebral disc samples of varying grades of degeneration were used for immunohistochemical analyses. In addition, samples from 8 subjects were analyzed for the presence of matrix metalloproteinase (MMP)-and aggrecanase-generated aggrecan products.Results. Messenger RNA for all the aggrecanases other than ADAMTS-8 was identified in intervertebral disc tissue, as was mRNA for TIMP-3. Levels of mRNA expression of ADAMTS 1, 4, 5, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. All these aggrecanases and TIMP-3 were also detected immunohistochemically in disc tissue, and numbers of nucleus pulposus cells staining positive for ADAMTS 4, 5, 9, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. Aggrecan breakdown products generated by MMP and aggrecanase activities were also detected in intervertebral disc tissue.Conclusion. The aggrecanases ADAMTS 1, 4, 5, 9, and 15 may contribute to the changes occurring in the ECM during intervertebral disc degeneration. Targeting these enzymes may be a possible future therapeutic strategy for the prevention of intervertebral disc degeneration and its associated morbidity.Chronic low back pain affects Ͼ70% of people at some point in their lives (1), with ϳ10% being chronically disabled. The causes of low back pain are multifactorial, although ϳ40% of all cases involve degeneration of the intervertebral discs (2). During degeneration, the matrix of the intervertebral disc undergoes structural, mechanical, and molecular changes resulting in a loss of demarcation between the outer annulus fibrosus and the inner nucleus pulposus. Additionally, alterations in collagen type and a decrease in proteoglycan content result in loss of tissue integrity, decreased hydration, and inability to withstand load (3). Importantly, the loss of proteoglycan, predominantly aggrecan, is considered to be an early indicator of intervertebral disc degeneration (4). Aggrecan molecules possess long core proteins with many chondroitin sulfate (CS) and keratan sulfate (KS) glycosaminoglycan (GAG) side chains (3). These GAG side chains are polyanionic due to the high content of carboxyl and sulfate groups, and thus they attract and bind water molecules, hydrating the tissue. Degradation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.