Previous work has demonstrated that two key melanocyte-specific elements termed the MSEu and MSEi play critical roles in the expression of the melanocyte-specific tyrosinase-related protein 1 (TRP-1) promoter. Both the MSEu and MSEi, located at position ؊237 and at the initiator, respectively, bind a melanocyte-specific factor termed MSF but are also recognized by a previously uncharacterized repressor, since mutations affecting either of these elements result in strong up-regulation of TRP-1 promoter activity in melanoma cells. Here we demonstrate that repression mediated by the MSEu and MSEi also operates in melanocytes. We also report that both the MSEu and MSEi are recognized by the brachyury-related transcription factor Tbx2, a member of the recently described T-box family, and that Tbx2 is expressed in melanocyte and melanoblast cell lines but not in melanoblast precursor cells. Although Tbx2 and MSF each recognize the TRP-1 MSEu and MSEi motifs, it is binding by Tbx-2, not binding by MSF, that correlates with repression. Several lines of evidence tend to point to the brachyury-related transcription factor Tbx2 as being the repressor of TRP-1 expression: both the MSEu and MSEi bind Tbx2, and mutations in either element that result in derepression of the TRP-1 promoter diminish binding by Tbx2; the TRP-1 promoter, but not the tyrosinase, microphthalmia, or glyceraldehyde-3-phosphate dehydrogenase (G3PDH) promoter, is repressed by Tbx2 in cotransfection assays; a high-affinity consensus brachyury/Tbx2-binding site is able to constitutively repress expression of the heterologous IE110 promoter; and a low-affinity brachyury/Tbx2 binding site is able to mediate Tbx2-dependent repression of the G3PDH promoter. Although we cannot rule out the presence of an additional, as yet unidentified factor playing a role in the negative regulation of TRP-1 in vivo, the evidence presented here suggests that Tbx2 most likely is the previously unidentified repressor of TRP-1 expression and as such is likely to represent the first example of transcriptional repression by a T-box family member.In attempting to understand how the precise temporal and spatial pattern of gene expression necessary for the development of an organism is achieved, consideration should be given not only to the question of why a specific gene is expressed in a particular cell type at any given time, but also to why it is not expressed elsewhere or at other times. Analysis of tissue-specific promoters in many cell types has revealed that they often contain binding sites for widely expressed transcription factors which may act together with factors with a more restricted tissue distribution. However, while these tissue-specific factors may be present in only a very limited number of cell types, they frequently fall into transcription factor families, members of which have identical or highly similar DNA-binding properties. For example, the CANNTG E-box motif is recognized by members of the basic helix-loop-helix (bHLH) class of transcription factors, and w...
Normal mouse melanocyte senescence and associated pigmentation require both copies of Ink4a-Arf and appear to depend more on p16 than on Arf function. Mutations of the INK4A-ARF locus may favor tumorigenesis from melanocytes by impairing senescence, cell differentiation, and (where ARF is disrupted) cell death.
Protein tyrosine kinases (PTKs) have been implicated in the development of many common human tumours including melanoma. Previously we isolated PTK gene sequences expressed in normal melanocytes. Here we examined expression of 9 of these genes in cell lines derived from defined stages of melanoma progression, by Northern blotting and in some cases immunoblotting. We also tested cells from 2 animal models of particular stages in progression, as well as uncultured biopsies of metastatic melanoma. The expression of 2 receptor kinase family members found in melanocytes, PTK7/CCK-4 and SEK/TYRO1, was decreased or lost in advanced melanomas. PTK7 mRNA was found in only 54% of melanoma cell lines and 20% of melanoma biopsies. Similarly, expression was lost in 2 advanced cell lines selected from an early melanoma line that did express PTK7 mRNA. SEK/TYRO1 expression was observed in 75% and 17% of cell lines from primary and metastastic melanomas, respectively. Conversely , mRNA for the non-receptor kinase PTK6/BRK was not detected in normal melanocytes or primary melanoma lines, but was found in 9% of metastatic melanoma cell lines.
The incidence of melanoma is increasing rapidly, with advanced lesions generally failing to respond to conventional chemotherapy. Here, we utilized DNA microarray-based gene expression profiling techniques to identify molecular determinants of melanoma progression within a unique panel of isogenic human melanoma cell lines. When a poorly tumorigenic cell line, derived from an early melanoma, was compared with two increasingly aggressive derivative cell lines, the expression of 66 genes was significantly changed. A similar pattern of differential gene expression was found with an independently derived metastatic cell line. We further examined these melanoma progression-associated genes via use of a tailored TaqMan Low Density Array (LDA), representing the majority of genes within our cohort of interest. Considerable concordance was seen between the transcriptomic profiles determined by DNA microarray and TaqMan LDA approaches. A range of novel markers were identified that correlated here with melanoma progression. Most notable was TSPY, a Y chromosome-specific gene that displayed extensive down-regulation in expression between the parental and derivative cell lines. Examination of a putative CpG island within the TSPY gene demonstrated that this region was hypermethylated in the derivative cell lines, as well as metastatic melanomas from male patients. Moreover, treatment of the derivative cell lines with the DNA methyltransferase inhibitor, 2'-deoxy-5-azacytidine (DAC), restored expression of the TSPY gene to levels comparable with that found in the parental cells. Additional DNA microarray studies uncovered a subset of 13 genes from the above-mentioned 66 gene cohort that displayed re-activation of expression following DAC treatment, including TSPY, CYBA and MT2A. DAC suppressed tumor cell growth in vitro. Moreover, systemic treatment of mice with DAC attenuated growth of melanoma xenografts, with consequent re-expression of TSPY mRNA. Overall, our data support the hypothesis that multiple genes are targeted, either directly or indirectly, by DNA hypermethylation during melanoma progression.
Protein tyrosine kinases have been implicated in tumor initiation and progression. Here we used Northern blotting to study expression of their genes in cultured normal melanocytes and 19 melanoma cell lines from different stages of tumor progression. We detected transcripts for 2 cytoplasmic (ABL and FES) and 6 receptor (ECK, ERB-B2, FGF-R4, IGFI-R, KDR and TIE) kinases but not for receptors RET or TRK-A. Genes for ECK, FGF-R4 and TIE were expressed ectopically in melanomas (not in normal melanocytes). Similarly, ECK protein was detected by immunoblotting in metastatic melanomas but not in normal melanocytes. ECK mRNA levels tended to increase again during late melanoma progression. ECK and TIE mRNAs were also detected in highly metastatic variant cells but not in the corresponding poorly metastatic parental lines. Conversely, FES and KDR gene expression was lost in most advanced primary and metastatic melanomas. These findings suggest positive and negative roles for specific tyrosine kinases during progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.