The vapor intrusion impacts associated with the presence of chlorinated volatile organic contaminant plumes in the ground water beneath residential areas in Colorado and New York have been the subject of extensive site investigations and structure sampling efforts. Large data sets of ground water and indoor air monitoring data collected over a decade-long monitoring program at the Redfield, Colorado, site and monthly ground water and structure monitoring data collected over a 19-month period from structures in New York State are analyzed to illustrate the temporal and spatial distributions in the concentration of volatile organic compounds that one may encounter when evaluating the potential for exposures due to vapor intrusion. The analysis of these data demonstrates that although the areal extent of structures impacted by vapor intrusion mirrors the areal extent of chlorinated volatile organic compounds in the ground water, not all structures above the plume will be impacted. It also highlights the fact that measured concentrations of volatile organic compounds in the indoor air and subslab vapor can vary considerably from month to month and season to season. Sampling results from any one location at any given point in time cannot be expected to represent the range of conditions that may exist at neighboring locations or at other times. Recognition of this variability is important when designing sampling plans and risk management programs to address the vapor intrusion pathway.
Current methods of predicting the response of soft clays to surface loading are often unsuccessful because the assumed constitutive relationships, including effective stress path behaviour, are incorrect. In particular, the transition from small-strain to large-strain behaviour (i.e. yielding) is frequently not taken into account. Recent laboratory testing has demonstrated that the behaviour of soft clays is largely controlled by yielding. The locus of effective stress states causing yield is known as the yield envelope (YE).The effective stress paths (ESP's) in soft clay foundations below the centre of six fills were determined from computed total stresses and measured pore-water pressures. Yield behaviour is clearly indicated by ESP shapes. The yield envelopes inferred from analyses of field data are similar to those obtained from laboratory testing. Effective stress path shapes vary widely, depending on a variety of factors, including imposed stress level, rate of construction, and boundary drainage conditions. This finding contradicts an earlier conclusion that soft clay behaviour can be characterized by a single ESP. Because of the wide range of possible ESP shapes, the parameters [Formula: see text] does not provide an adequate basis for determining the effective stress state in a soft clay.The ESP/YE analyses indicate that yield can occur either during loading or during excess pore-water pressure dissipation following completion of loading. Yield of sensitive soils during loading is usually followed by strain softening. However, in some soils, dilatant behaviour appears to occur. Yield during dissipation of excess pore-water pressure is characterized by a dramatic change in cv and increased compressibility. Key words: soft clay, yield, effective stress paths, field behaviour, strain softening, rate of consolidation.
Procedures satisfactory for the design of seepage control liners for hydraulic structures are not generally sufficient for the design of pollution control liners, where the primary intent is mitigation of contaminant migration effects on the environment. Contaminant migration rates and concentrations are controlled by seepage rate, dispersion and diffusion processes, and attenuation mechanisms such as filtration, precipitation, adsorption, and biodegradation. Both liner and subsoil (or bedrock) properties affect contaminant migration; thus, both should be considered as part of the overall liner system. Mechanisms for controlling migration are limited by the perceived extent of the liner system. Typical liner materials include compacted clays, admixes, polymeric membranes, spray-ons, and sealants. The field hydraulic properties, liner thickness, and liner–fluid compatibility should be considered in design
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.