Genome-wide association studies have the potential to identify causal genetic factors underlying important phenotypes but have rarely been performed in bacteria. We present an association mapping method that takes into account the clonal population structure of bacteria and is applicable to both core and accessory genome variation. Campylobacter is a common cause of human gastroenteritis as a consequence of its proliferation in multiple farm animal species and its transmission via contaminated meat and poultry. We applied our association mapping method to identify the factors responsible for adaptation to cattle and chickens among 192 Campylobacter isolates from these and other host sources. Phylogenetic analysis implied frequent host switching but also showed that some lineages were strongly associated with particular hosts. A seven-gene region with a host association signal was found. Genes in this region were almost universally present in cattle but were frequently absent in isolates from chickens and wild birds. Three of the seven genes encoded vitamin B 5 biosynthesis. We found that isolates from cattle were better able to grow in vitamin B 5 -depleted media and propose that this difference may be an adaptation to host diet.evolution | genomics | host adaptation | transmission ecology C olonization of multiple host species increases the number of transmission opportunities for animal pathogens and symbionts but depends on making rapid adjustments to each new host (1). For organisms such as Campylobacter, relatively small genome size (1.6 Mb) limits the phenotypic flexibility of each bacterium. Single clones can multiply to large numbers within hosts, and genetic variation arising among these bacteria increases the range of available phenotypes. This might allow a bacterial lineage to passage successfully through multiple hosts by repeatedly evolving host adaptive traits.Experimental work has shown that a large proportion of adaptations to new environments incur an equal or greater cost in other environments (2). This cost of adaptation might make a strategy of continuous evolution unstable by causing a progressive loss of fitness in the course of repeated host switching. Three factors that could reduce this cost of readaptation are canalization of genetic change via contingency loci (3, 4); coordinated genetic regulation of host-specific factors (5, 6); and import of DNA by recombination from other, already adapted, lineages in each new host species (7). The relative importance of these mechanisms for host specificity in Campylobacter remains unknown.Campylobacter jejuni and Campylobacter coli are common components of the gut microbiota in numerous wild and domesticated animal species, as well as, together, being one of the most common causes of food poisoning in humans. The characterization of large numbers of C. jejuni and C. coli isolates from diverse sources and locations by multilocus sequence typing (MLST) has shown that there is genetic differentiation among sequence types (STs) associated with diffe...
The genome sequence of Helicobacter pylori suggests that this bacterium possesses several Fe acquisition systems, including both Fe2+‐ and Fe3+‐citrate transporters. The role of these transporters was investigated by generating insertion mutants in feoB, tonB, fecA1 and fecDE. Fe transport in the feoB mutant was ≈ 10‐fold lower than in the wild type (with 0.5 μM Fe), irrespective of whether Fe was supplied in the Fe2+ or Fe3+ form. In contrast, transport rates were unaffected by the other mutations. Complementation of the feoB mutation fully restored both Fe2+ and Fe3+ transport. The growth inhibition exhibited by the feoB mutant in Fe‐deficient media was relieved by human holo‐transferrin, holo‐lactoferrin and Fe3+‐dicitrate, but not by FeSO4. The feoB mutant had less cellular Fe and was more sensitive to growth inhibition by transition metals in comparison with the wild type. Biphasic kinetics of Fe2+ transport in the wild type suggested the presence of high‐ and low‐affinity uptake systems. The high‐affinity system (apparent Ks = 0.54 μM) is absent in the feoB mutant. Transport via FeoB is highly specific for Fe2+ and was inhibited by FCCP, DCCD and vanadate, indicating an active process energized by ATP. Ferrozine inhibition of Fe2+ and Fe3+ uptake implied the concerted involvement of both an Fe3+ reductase and FeoB in the uptake of Fe supplied as Fe3+. Taken together, the results are consistent with FeoB‐mediated Fe2+ uptake being a major pathway for H. pylori Fe acquisition. feoB mutants were unable to colonize the gastric mucosa of mice, indicating that FeoB makes an important contribution to Fe acquisition by H. pylori in the low‐pH, low‐O2 environment of the stomach.
Hybridization between distantly related organisms can facilitate rapid adaptation to novel environments, but is potentially constrained by epistatic fitness interactions among cell components. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other by around 15% at the nucleotide level, corresponding to an average of nearly 40 amino acids per protein-coding gene. Using whole genome sequencing, we show that a single C. coli lineage, which has successfully colonized an agricultural niche, has been progressively accumulating C. jejuni DNA. Members of this lineage belong to two groups, the ST-828 and ST-1150 clonal complexes. The ST-1150 complex is less frequently isolated and has undergone a substantially greater amount of introgression leading to replacement of up to 23% of the C. coli core genome as well as import of novel DNA. By contrast, the more commonly isolated ST-828 complex bacteria have 10–11% introgressed DNA, and C. jejuni and nonagricultural C. coli lineages each have <2%. Thus, the C. coli that colonize agriculture, and consequently cause most human disease, have hybrid origin, but this cross-species exchange has so far not had a substantial impact on the gene pools of either C. jejuni or nonagricultural C. coli. These findings also indicate remarkable interchangeability of basic cellular machinery after a prolonged period of independent evolution.
The dct locus of Rhodobacter capsulatus encodes a high-affinity transport system for the C 4 -dicarboxylates malate, succinate, and fumarate. The nucleotide sequence of the region downstream of the previously sequenced dctP gene (encoding a periplasmic C 4 -dicarboxylate-binding protein) was determined. Two open reading frames (ORFs) of 681 bp (dctQ) and 1,320 bp (dctM) were identified as additional dct genes by insertional mutagenesis and complementation studies. DctQ (24,763 Da) and DctM (46,827 Da) had hydropathic profiles consistent with the presence of 4 and 12 potential transmembrane segments, respectively, and were localized in the cytoplasmic membrane fraction after heterologous expression of the dctQM ORFs in Escherichia coli. DctP, DctQ, and DctM were found to be unrelated to known transport proteins in the ABC (ATP-binding cassette) superfamily but were shown to be homologous with the products of previously unidentified ORFs in a number of gram-negative bacteria, including Bordetella pertussis, E. coli, Salmonella typhimurium, Haemophilus influenzae, and Synechocystis sp. strain PCC6803. An additional ORF (rypA) downstream of dctM encodes a protein with sequence similarity to eukaryotic protein-tyrosine phosphatases, but interposon mutagenesis of this ORF did not result in a Dct ؊ phenotype. Complementation of a Rhizobium meliloti dctABD deletion mutant by heterologous expression of the dctPQM genes from R. capsulatus demonstrated that no additional structural genes were required to form a functional transport system. Transport via the Dct system was vanadate insensitive, and in uncoupler titrations with intact cells, the decrease in the rate of succinate transport correlated closely with the fall in membrane potential but not with the cellular ATP concentration, implying that the proton motive force, rather than ATP hydrolysis, drives uptake. It is concluded that the R. capsulatus Dct system is a new type of periplasmic secondary transporter and that similar, hitherto-unrecognized systems are widespread in gram-negative bacteria. The name TRAP (for tripartite ATP-independent periplasmic) transporters is proposed for this new group.Bacterial binding-protein-dependent solute transport systems are structurally complex, consisting of both periplasmic and membrane-bound components (3). To date, all such systems which have been sequenced and characterized functionally possess, in addition to the periplasmic binding protein and one or two integral membrane proteins, a highly conserved energy-coupling protein containing an ATP-binding cassette (the ABC protein) (28). In contrast, secondary transport systems, which are coupled to an electrochemical ion gradient rather than ATP hydrolysis, are much simpler and usually consist of a single integral membrane protein only. A number of families of related symporters, antiporters, and uniporters have been identified by primary sequence comparisons (18,23,40). Periplasmic binding proteins always appear to be a component of uptake, but not efflux, systems in the ABC t...
The human gastrointestinal pathogen Campylobacter jejuni is a microaerophilic bacterium with a respiratory metabolism. The genome sequence of C. jejuni strain 11168 reveals the presence of genes that encode terminal reductases that are predicted to allow the use of a wide range of alternative electron acceptors to oxygen, including fumarate, nitrate, nitrite, and N-or S-oxides. All of these reductase activities were present in cells of strain 11168, and the molybdoenzyme encoded by Cj0264c was shown by mutagenesis to be responsible for both trimethylamine-N-oxide (TMAO) and dimethyl sulfoxide (DMSO) reduction. Nevertheless, growth of C. jejuni under strictly anaerobic conditions (with hydrogen or formate as electron donor) in the presence of any of the electron acceptors tested was insignificant. However, when fumarate, nitrate, nitrite, TMAO, or DMSO was added to microaerobic cultures in which the rate of oxygen transfer was severely restricted, clear increases in both the growth rate and final cell density compared to what was seen with the control were obtained, indicative of electron acceptor-dependent energy conservation. The C. jejuni genome encodes a single class I-type ribonucleotide reductase (RNR) which requires oxygen to generate a tyrosyl radical for catalysis. Electron microscopy of cells that had been incubated under strictly anaerobic conditions with an electron acceptor showed filamentation due to an inhibition of cell division similar to that induced by the RNR inhibitor hydroxyurea. An oxygen requirement for DNA synthesis can thus explain the lack of anaerobic growth of C. jejuni. The results indicate that strict anaerobiosis is a stress condition for C. jejuni but that alternative respiratory pathways can contribute significantly to energy conservation under oxygen-limited conditions, as might be found in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.