Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. Highthroughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.
Diffusion tensor imaging (DTI) measures diffusion of molecular water, which can be used to calculate indices of white matter integrity. Early DTI studies of aging primarily focused on two global measures of integrity; the average rate (mean diffusivity, MD) and orientation coherence (fractional anisotropy, FA) of diffusion. More recent studies have added measures of water movement parallel (axial diffusivity, AD) and perpendicular (radial diffusivity, RD) to the primary diffusion direction, which are thought to reflect the neural bases of age differences in diffusion (i.e., axonal shrinkage and demyelination, respectively). In the present study, patterns of age differences in white matter integrity were assessed by comparing younger and healthy older adults on multiple measures of integrity (FA, AD, RD). Results revealed two commonly reported patterns (Radial Increase Only and Radial/Axial Increase), and one relatively novel pattern (Radial Increase/Axial Decrease) that varied by brain region and may reflect differential aging of microstructural (e.g., degree of myelination) and macrostructural (e.g., coherence of fiber orientation) properties of white matter. In addition, larger age differences in FA in frontal white matter were consistent with the anterior-posterior gradient of age differences in white matter integrity. Together, these findings complement other recent studies in providing information about patterns of diffusivity that are characteristic of healthy aging. KeywordsAging; axial diffusivity; DTI; fractional anisotropy; radial diffusivity Brain aging research has been dominated by examinations of age-related differences in the structure and function of gray matter (Cabeza, et al. 2005), with the other half of the brainwhite matter-having been largely ignored. The lack of attention to white matter aging in the past likely resulted from limitations in imaging technology, because the relatively recent Address correspondence to: Ilana J. Bennett, Georgetown University, Department of Psychology, 301 N White Gravenor Building, Washington, DC 20057, PH: 202-687-4099, FX: 202-687-6050, ijb5@georgetown.edu. Preliminary findings from this project were presented at the Society for Neuroscience Conferences in San Diego, CA in November, 2007 and Washington, DC in November, 2008; NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript advent of diffusion tensor imaging (DTI) has led to widespread in interest in age-related changes in white matter.DTI is a magnetic resonance imaging (MRI) technique that measures the diffusion of molecular water (Basser, et al. 1994;. Water diffuses 3-7 times more rapidly along the length of axons aligned in white matter tracts compared to movement perpendicular to the axons (Le Bihan 2003; because the latter is restricted by axonal cell membranes, myelin sheaths, and neurofilaments (Beaulieu 2002). Various properties of water diffusion can be calculated from DTI-based eigenvalue measures (λ1, λ2, and λ3; which indicate the rate of diffusion along the...
Aging is associated with significant white matter deterioration and this deterioration is assumed to be at least partly a consequence of myelin degeneration. The present study investigated specific predictions of the myelodegeneration hypothesis using diffusion tensor tractography. This technique has several advantages over other methods of assessing white matter architecture, including the possibility of isolating individual white matter tracts and measuring effects along the whole extent of each tract. The study yielded three main findings. First, age-related white matter deficits increased gradually from posterior to anterior segments within specific fiber tracts traversing frontal and parietal, but not temporal cortex. This pattern inverts the sequence of myelination during childhood and early development observed in previous studies and lends support to a "last-in-first-out" theory of the white matter health across the lifespan. Second, both the effects aging on white matter and their impact on cognitive performance were stronger for radial diffusivity (RD) than for axial diffusivity (AD). Given that RD has previously been shown to be more sensitive to myelin integrity than AD, this second finding is also consistent with the myelodegeneration hypothesis. Finally, the effects of aging on select white matter tracts were associated with age difference in specific cognitive functions. Specifically, FA in anterior tracts was shown to be primarily associated with executive tasks and FA in posterior tracts mainly associated with visual memory tasks. Furthermore, these correlations were mirrored in RD, but not AD, suggesting that RD is more sensitive to age-related changes in cognition. Taken together, the results help to clarify how age-related white matter decline impairs cognitive performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.