OPTRA is developing a next-generation digital micromirror device (DMD) based two-band infrared scene projector (IRSP) with infinite bit-depth independent of frame rate and an order of magnitude improvement in contrast over the state of the art. Traditionally DMD-based IRSPs have offered larger format and superior uniformity and pixel operability relative to resistive and diode arrays, however, they have been limited in contrast and also by the inherent bitdepth / frame rate tradeoff imposed by pulse width modulation (PWM). OPTRA's high dynamic range IRSP (HIDRA SP) has broken this dependency with a dynamic structured illumination solution. The HIDRA SP uses a source conditioning DMD to impose the structured illumination on two projector DMDs -one for each spectral band. The source conditioning DMD is operated in binary mode, and the relay optics which form the structured illumination act as a low pass spatial filter. The structured illumination is therefore spatially grayscaled and more importantly is analog with no PWM. In addition, the structured illumination concentrates energy where bright object will be projected and extinguishes energy in dark regions; the result is a significant improvement in contrast. The projector DMDs are operated with 8-bit PWM, however the total projected image is analog with no bit-depth / frame rate dependency. In this paper we describe our progress towards the development, build, and test of a prototype HIDRA SP.
An imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer is being developed for real-time threedimensional cloud profiling. The system employs a single modulator and a novel optical configuration which projects an array of angularly dispersed IR beams, each of which exhibits comparable throughput to a single channel OP-FTIR, to an array of respective retroreflector arrays remotely located at the opposite side of the test grid. The return light from each retroreflector array is imaged onto respective detectors that record the spatially-resolved interferograms which are subsequently transformed and analyzed for molecular content via advanced multicomponent algorithms. The result is a capability to sensitively, quantitatively, and simultaneously measure the molecular absorbance and associated concentration-pathlength of an open release plume over a spatial region. Use of two or more I-OP-FTIR sensors around the perimeter of the release allows for tomographic reconstruction of the concentration map of each molecular species contained in the plume.This approach realizes the high sensitivity of an OP-FTIR spectrometer without adding the expense and logistical difficulties associated with installing a large number of spectrometer units required for the cloud profiling application. In addition, the active spectral measurement supports detection in zero temperature contrast conditions where the plume is the same temperature as the background. A further reduction in cost and weight is achieved through the use of lowcost plastic press molded retroreflector arrays to return the spatially dispersed open path beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.