Closed, singularity-free, inflationary cosmological models have recently been studied in the context of general relativity. Despite their appeal, these so called emergent models suffer from a number of limitations. These include the fact that they rely on an initial Einstein static state to describe the past eternal phase of the universe. Given the instability of such a state within the context of general relativity, this amounts to a very severe fine tuning. Also in order to be able to study the dynamics of the universe within the context of general relativity, they set the initial conditions for the universe in the classical phase. Here we study the existence and stability of such models in the context of Loop Quantum Cosmology and show that both these limitations can be partially remedied, once semi-classical effects are taken into account. An important consequence of these effects is to give rise to a static solution (not present in GR), which dynamically is a centre equilibrium point and located in the more natural semi-classical regime. This allows the construction of emergent models in which the universe oscillates indefinitely about such an initial static state. We construct an explicit emergent model of this type, in which a non-singular past eternal oscillating universe enters a phase where the symmetry of the oscillations is broken, leading to an emergent inflationary epoch, while satisfying all observational and semi-classical constraints. We also discuss emergent models in which the universe possesses both early- and late-time accelerating phases.Comment: 11 pages, 8 figure
We study inflationary perturbations in multiple-field models, for which ζ typically evolves until all isocurvature modes decay-the "adiabatic limit". We use numerical methods to explore the sensitivity of the local-shape bispectrum to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of f NL to be large. Other examples can be constructed using a waterfall field to terminate inflation while f NL is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak f NL .
A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "δN " Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of f NL in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.