Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses
To date the design of structures using topology optimization methods has mainly focused on single-objective problems. Since real-world design problems typically involve several different objectives, most of which counteract each other, it is desirable to present the designer with a set of Pareto optimal solutions that capture the trade-off between these objectives, known as a smart Pareto set. Thus far only the weighted sums and global criterion methods have been incorporated into topology optimization problems. Such methods are unable to produce evenly distributed smart Pareto sets. However, recently the smart normal constraint method has been shown to be capable of directly generating smart Pareto sets. Therefore, in the present work, an updated smart Normal Constraint Method is combined with a Bi-directional Evolutionary Structural Optimization (SNC-BESO) algorithm to produce smart Pareto sets for multiobjective topology optimization problems. Two examples are presented, showing that the Pareto solutions found by the SNC-BESO method make up a smart Pareto set. The first example, taken from the literature, shows the benefits of the SNC-BESO method. The second example is an industrial design problem for a micro fluidic mixer. Thus, the problem is multi-physics as well as multiobjective, highlighting the applicability of such methods to real-world problems. The results indicate that the method is capable of producing smart Pareto sets to industrial problems in an effective and efficient manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.