In the bistable regime of the FitzHugh-Nagumo model of reaction-diffusion systems, spatially homogeneous patterns may be nonlinearly unstable to the formation of compact "localized states." The formation of space-filling patterns from instabilities of such structures is studied in the context of a nonlocal contour dynamics model for the evolution of boundaries between high and low concentrations of the activator. An earlier heuristic derivation [D.M. Petrich and R.E. Goldstein, Phys. Rev. Lett. 72, 1120Lett. 72, (1994] is made more systematic by an asymptotic analysis appropriate to the limits of fast inhibition, sharp activator interfaces and small asymmetry in the bistable minima. The resulting contour dynamics is temporally local, with the normal component of the velocity involving a local contribution linear in the interface curvature and a nonlocal component having the form of a screened Biot-Savart interaction. The amplitude of the nonlocal interaction is set by the activator-inhibitor coupling and controls the "lateral inhibition" responsible for the destabilization of localized structures such as spots and stripes, and the repulsion of nearby interfaces in the later stages of those instabilities. The phenomenology of pattern formation exhibited by the contour dynamics is consistent with that seen by Lee, McCormick, Ouyang, and Swinney in experiments on the iodide-ferrocyanide-sulfite reaction in a gel reactor. Extensive numerical studies of the underlying partial differential equations are presented and compared in detail with the contour dynamics. The similarity of these phenomena (and their mathematical description) with those observed in amphiphilic monolayers, Type-I superconductors in the intermediate state, and magnetic fluids in Hele-Shaw geometry are emphasized.
Cyclonic vortices on the tropopause are characterized by compact structure and larger pressure, wind, and temperature perturbations when compared to broader and weaker anticyclones. Neither the origin of these vortices nor the reasons for the preferred asymmetries are completely understood; quasigeostrophic dynamics, in particular, have cyclone-anticyclone symmetry.In order to explore these and related problems, a novel small Rossby number approximation is introduced to the primitive equations applied to a simple model of the tropopause in continuously stratified fluid. This model resolves dynamics that give rise to vortical asymmetries, while retaining both the conceptual simplicity of quasigeostrophic dynamics and the computational economy of two-dimensional flows. The model contains no depth-independent (barotropic) flow, and thus may provide a useful comparison to two-dimensional flows dominated by this flow component.Solutions for random initial conditions (i.e., freely decaying turbulence) exhibit vortical asymmetries typical of tropopause observations, with strong localized cyclones, and weaker diffuse anticyclones. Cyclones cluster around a distinct length scale at a given time, whereas anticyclones do not. These results differ significantly from previous studies of cyclone-anticyclone asymmetry in the shallow-water primitive equations and the periodic balance equations. An important source of asymmetry in the present solutions is divergent flow associated with frontogenesis and the forward cascade of tropopause potential temperature variance. This thermally direct flow changes the mean potential temperature of the tropopause, selectively maintains anticyclonic filaments relative to cyclonic filaments, and appears to promote the merger of anticyclones relative to cyclones.
Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertiagravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves' horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole's flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.